As PMS contraction progresses, the core temperature of a fully convective star increases to the point at which Li is burned in p,α reactions. The time taken to reach this temperature is longer for lower masses and hence the luminosity at which Li burning runs to completion is also age dependent. In a cluster of coeval stars, we expect to see very low-luminosity objects that retain all their initial lithium. This point is known as the lithium depletion boundary (LDB). The plot on the right shows how different evolutionary models predict a very similar relationship between luminosity at the LDB and age.

Note that higher mass stars (>0.6Msun) can also retain Li, if a radiative core pushes out before PMS burning begins or is complete; but at ages >10 Myr there will be a gap centred on 0.4Msun where no Li is present – here we are interested in the cool, low luminosity edge of this gap.