TEPCat: Rossiter-McLaughlin effect observations of transiting planets


 

This table catalogues the Rossiter-McLaughlin effects measured for known (published) transiting extrasolar planets. This effect is normally observed spectroscopically (usually via radial velocity measurements) but can be obtained photometrically, by analysis of starspot crossing events during transits.

The Rossiter-McLaughlin effect was originally predicted by Holt (1893) and observed (but not definitively) in the eclipsing binary star systems δ Librae (Schlesinger 1910) and λ Tauri (Schlesinger 1916). It was subsequently described and clearly demonstrated by Rossiter (1924) for β Lyrae and McLaughlin (1924) for β Persei. The designation "Rossiter-McLaughlin effect" arose from the latter two papers.

All known Rossiter-McLaughlin measurements are included. Many systems have multiple measurements, often resulting from the same data. In these cases the most recent is normally the most reliable but it is important to check the published papers to be sure. I indicate the preferred value for each object using the "Pflag" column in the ASCII and CSV files (not in the HTML table below). Pflag is set to "y" for the best value for a given object, and to "n" for all other values for this object.

The quantity most commonly observed is the sky-projected angle between the axes of the stellar rotation and the planetary orbit. This quantity is normally called λ. There is an alternative definition of the co-ordinate system which yields the value β instead. The two quantities are related by   λ = -β   i.e. one is the negative value of the other.

The true angle between the axes of the stellar rotation and the planetary orbit is more difficult to determine, and only a few measurements exist. This quantity is called ψ and it is always as big as or bigger than the absolute value of λ:   ψ ≥ |λ|   This means that objects with a constraint on λ also have a constraint on ψ, but this is often not given explicitly.

Click here for details of the quantities and their units
Click here for the table in machine-readable ASCII format
Click here for the table in machine-readable CSV format
Click here to return to the TEPCat main page

 

System Teff (K) λ (degrees) ψ (degrees) Reference
55 Cnc e 5196 ± 24   72.4   + 12.7   - 11.5  
indeterminate


Bourrier & Hébrard (2014)
López-Morales et al. (2014)
CoRoT-1 5950 ± 150   77   ±   11  

Pont et al. (2010)
CoRoT-2 5598 ± 50   7.2   ±   4.5  
  4.7   ±   12.3  
  −1.0   + 6.0   - 7.7  
  4.0   + 5.9   - 6.1  




Bouchy et al. (2008)
Nutzmann et al. (2011)
Czesla et al. (2012)
Gillon et al. (2010)
CoRoT-3 6558 ± 44   −37.6   + 22.3   - 10.0  

Triaud et al. (2009)
CoRoT-11 6343 ± 72 prograde
  0.1   ±   2.6  


Gandolfi et al. (2010)
Gandolfi et al. (2012)
CoRoT-18 5440 ± 100   −10   ±   20  
  20   ±   20  
Hébrard et al. (2011)
CoRoT-19 6090 ± 70   −52   + 27   - 22  

Guenther et al. (2011)
HAT-P-1 5975 ± 50   3.7   ±   2.1  

Johnson et al. (2008)
HAT-P-2 6290 ± 60   1.2   ±   13.4  
  0.2   + 12.2   - 12.5  
  9   ±   10  



Winn et al. (2007)
Loeillet et al. (2008)
Albrecht et al. (2012)
HAT-P-4 6036 ± 46   −4.9   ±   11.9  

Winn et al. (2011)
HAT-P-6 6570 ± 80   166   ±   10  
  165   ±   6  


Hébrard et al. (2011)
Albrecht et al. (2012)
HAT-P-7 6310 ± 15   182.5   ±   9.4  
  −132.6   + 10.5   - 16.3  
  155   ±   37  
  220.3   + 8.2   - 9.3  

  142   + 12   - 16  
  136   + 16   - 22  

  94.6   + 5.5   - 3.0  


  115   + 19   - 16  
  97   ±   14  
  101   ±   2  
  87   ±   2  
  116.4   + 30.2   - 14.7  
Winn et al. (2009)
Narita et al. (2009)
Albrecht et al. (2012)
Benomar et al. (2014)
Lund et al. (2014)
Masuda (2015) solution 1
Masuda (2015) solution 2
Campante et al. (2016)
HAT-P-8 6200 ± 80   −9.7   + 9.0   - 7.7  
  −17   + 9.2   - 11.5  


Simpson et al. (2011)
Moutou et al. (2011)
HAT-P-9 6350 ± 150   −16   ±   8  

Moutou et al. (2011)
HAT-P-11 4780 ± 50   103   + 26   - 10  
  103   + 22   - 18  
  106   + 15   - 12  
  121   + 24   - 21  
almost polar orbit


  106   + 15   - 11  
  97   + 8   - 4  

Winn et al. (2010)
Hirano et al. (2010)
Sanchis-Ojeda et al. (2011) solution 1
Sanchis-Ojeda et al. (2011) solution 2
Deming et al. (2011)
HAT-P-13 5653 ± 90   1.9   ±   8.6  

Winn et al. (2010)
HAT-P-14 6600 ± 90   189.1   ±   5.1  

Winn et al. (2011)
HAT-P-16 6140 ± 72   −10   ±   16  
  −2   + 55   - 46  


Moutou et al. (2011)
Albrecht et al. (2012)
HAT-P-17 5246 ± 80   19   + 14   - 16  

Fulton et al. (2013)
HAT-P-18 4870 ± 50   132   ±   15  

Esposito et al. (2014)
HAT-P-20 4595 ± 45   −8.0   ±   6.9  
  36   + 10   - 12  
Esposito et al. (2017)
HAT-P-23 5885 ± 72   15   ±   22  

Moutou et al. (2011)
HAT-P-24 6373 ± 80   20   ±   16  

Albrecht et al. (2012)
HAT-P-27 5316 ± 55   24.2   + 76.0   - 44.5  

Brown et al. (2012)
HAT-P-30 6338 ± 42   73.5   ±   9.0  

Johnson et al. (2011)
HAT-P-32 6207 ± 88   85   ±   1.5  

Albrecht et al. (2012)
HAT-P-34 6442 ± 88   0   ±   14  

Albrecht et al. (2012)
HAT-P-36 5620 ± 40   −14   ±   18  
  0   + 63   - 0  
Mancini et al. (2015)
HAT-P-41 6390 ± 100   −22.1   + 0.8   - 6.0  

Johnson et al. (2017)
HAT-P-56 6566 ± 50   8   ±   2  

Zhou et al. (2016)
HATS-2 5227 ± 95   8   ±   8  

Mohler-Fischer et al. (2013)
HATS-3 6351 ± 76   3   ±   25  

Addison et al. (2014)
HATS-14 5346 ± 60   76   + 4   - 5  

Zhou et al. (2015)
HD 17156 6079 ± 56   62   ±   25  
  9.4   ±   9.3  
  −4.8   ±   5.3  
  10.0   ±   5.1  




Narita et al. (2008)
Cochran et al. (2008)
Barbieri et al. (2009)
Narita et al. (2009)
HD 80606 5574 ± 72 prograde
  50   + 61   - 36  
  53   + 34   - 21  
  42   ±   8  




Moutou et al. (2009)
Pont et al. (2009)
Winn et al. (2009)
Hébrard et al. (2010)
HD 149026 6147 ± 50   −12   ±   15  
  12   ±   7  


Wolf et al. (2007)
Albrecht et al. (2012)
HD 189733 5050 ± 50   −1.4   ±   1.1  
  0.85   + 0.28   - 0.32  
  −0.50   ±   0.30  

  −0.4   ±   0.2  



  4   + 18   - 4  
  7   + 12   - 4  
Winn et al. (2006)
Triaud et al. (2009)
Collier Cameron et al. (2010)
Dumusque (2014)
Cegla et al. (2016)
HD 209458 6117 ± 50   3.9   + 18   - 21  
  −4.4   ±   1.4  
  −5   ±   7  



Queloz et al. (2000)
Winn et al. (2005)
Albrecht et al. (2012)
K2-29 5358 ± 38   1.5   ±   8.7  

Santerne et al. (2016)
K2-34 6131 ± 47   −1   + 10   - 9  

Hirano et al. (2016)
KELT-1 6516 ± 49   2   ±   16  

Siverd et al. (2012)
KELT-6 6102 ± 43   −36   ±   11  

Damasso et al. (2015)
KELT-7 6789
+ 50 − 49
  9.7   ±   5.2  
  2.7   ±   0.6  


Bieryla et al. (2015)
Zhou et al. (2016)
KELT-9 10170 ± 450   −84.8   ±   1.4  

Gaudi et al. (2017)
KELT-17 7454 ± 49   −115.9   ±   4.1  
  116   ±   4  
Zhou et al. (2016)
KELT-19 7500 ± 110   −179.7   + 3.7   - 3.8  

Siverd et al. (2017)
KELT-20 8730
+ 250 − 260
  3.4   ±   2.1  
  0.6   ±   4  


Lund et al. (2017)
Talens et al. (2017)
Kepler-8 6213 ± 150   −26.4   ±   10.1  
  5   ±   7  


Jenkins et al. (2011)
Albrecht et al. (2012)
Kepler-13 7650 ± 250   23   ±   4  
  58.6   ±   2  
  58.6   ±   2  
  59.20   ±   0.05  


  60   ±   2  
  60.25   ±   0.05  
Barnes et al. (2011)
Johnson et al. (2014)
Masuda (2015)
Howarth & Morello (2017)
Kepler-17 5781 ± 85   0   ±   15  
  0   ±   15  
Désert et al. (2011)
Kepler-25c 6270 ± 79   −0.5   ±   5.7  
  9.4   ±   7.1  


  26.9   + 7.0   - 9.2  
  12.6   + 6.7   - 11.0  
Albrecht et al. (2013)
Benomar et al. (2014)
Campante et al. (2016)
Kepler-30b 5498 ± 54   4   ±   10  
  −1   ±   10  


Sanchis-Ojeda et al. (2011) method 1
Sanchis-Ojeda et al. (2011) method 2
Kepler-50b 6225 ± 66 aligned

Chaplin et al. (2013)
Kepler-50c 6225 ± 66 aligned

Chaplin et al. (2013)
Kepler-56b 4840 ± 97 misaligned

Huber et al.(2013)
Kepler-56c 4840 ± 97 misaligned

Huber et al.(2013)
Kepler-63 5576 ± 50   −110   + 22   - 14  
  145   + 9   - 14  
Sanchis-Ojeda et al. (2013)
Kepler-65b 6211 ± 66 aligned

Chaplin et al. (2013)
Kepler-65c 6211 ± 66 aligned

Chaplin et al. (2013)
Kepler-65d 6211 ± 66 aligned

Chaplin et al. (2013)
Kepler-89d 6182 ± 82   −6   + 13   - 11  
  −11   ±   11  


Hirano et al. (2012)
Albrecht et al. (2013)
Kepler-420 5520 ± 80   74   + 32   - 46  

Santerne et al. (2014)
Kepler-448 6820 ± 120   12.6   + 3.0   - 2.9  
  −7.1   + 4.2   - 2.8  


Bourrier et al. (2015)
Johnson et al. (2017)
MASCARA-1 7554 ± 150   69.5   ±   3  

Talens et al. (2017)
Qatar-1 4910 ± 100   −8.4   ±   7.1  

Covino et al. (2013)
Qatar-2 4645 ± 50   4.3   ±   4.5  
  0   ±   8  
  0   ±   10  
  15   ±   20  



  0   + 43   - 0  
Mancini et al. (2014)
Mocnik et al. (2016)
Dai et al. (2016)
Esposito et al. (2017)
TrES-1 5226 ± 50   30   ±   21  

Narita et al. (2007)
TrES-2 5850 ± 50   −9   ±   12  

Winn et al. (2008)
TrES-4 6295 ± 65   6.3   ±   4.7  

Narita et al. (2010)
WASP-1 6160 ± 64   −79.0   + 4.5   - 4.3  
  −59   + 99   - 26  


Simpson et al. (2011)
Albrecht et al. (2011)
WASP-2 5170 ± 60   −153   + 15   - 11  
indeterminate


Triaud et al. (2010)
Albrecht et al. (2011)
WASP-3 6340 ± 90   15   + 10   - 9  
  3.3   + 2.5   - 4.4  
  5   + 6   - 5  
  20.0   ±   3.3  




Simpson et al. (2010)
Tripathi et al. (2010)
Miller et al. (2010)
Oshagh et al. (2013)
WASP-4 5540 ± 55   4   + 34   - 43  
  −1   + 14   - 12  


Triaud et al. (2010)
Sanchis-Ojeda et al. (2011)
WASP-5 5770 ± 65   12.1   + 8.0   - 10.0  

Triaud et al. (2010)
WASP-6 5375 ± 65   −11   + 18   - 14  
  7.2   ±   3.7  


Gillon et al. (2009)
Tregloan-Reed et al. (2015)
WASP-7 6520 ± 70   86   ±   6  

Albrecht et al. (2011)
WASP-8 5600 ± 80   −123.3   + 3.4   - 4.4  
  −143.0   + 1.6   - 1.5  


Queloz et al. (2010)
Bourrier et al. (2017)
WASP-11 4900 ± 65   7   ±   5  

Mancini et al. (2015)
WASP-12 6313 ± 52   59   + 15   - 20  

Albrecht et al. (2012)
WASP-13 6025 ± 21   8   + 13   - 12  

Brothwell et al. (2014)
WASP-14 6462 ± 75   −14   + 21   - 13  
  −33.1   ±   7.4  


Joshi et al. (2009)
Johnson et al. (2009)
WASP-15 6573 ± 70   −139.6   + 4.3   - 5.2  

Triaud et al. (2010)
WASP-16 5630 ± 70   −4.2   + 11.0   - 13.9  
  11   + 26   - 19  


Brown et al. (2012)
Albrecht et al. (2012)
WASP-17 6550 ± 100   −147   + 49   - 11  
  167.4   ±   11.2  
  −148.5   + 4.2   - 5.4  
  −148.7   + 7.7   - 6.7  




Anderson et al. (2010)
Bayliss et al. (2010)
Triaud et al. (2010)
Anderson et al. (2011)
WASP-18 6400 ± 70   4.0   ±   5.0  
  13   ±   7  


Triaud et al. (2010)
Albrecht et al. (2012)
WASP-19 5460 ± 90   4.6   ±   5.2  
  15   ±   11  
  1.0   ±   1.2  
  0   ±   20  


Hellier et al. (2011)
Albrecht et al. (2012)
Tregloan-Reed et al. (2012)
WASP-20 6000 ± 100   12.7   ±   4.2  

Anderson et al. (2015)
WASP-22 6153 ± 46   22   ±   16  

Anderson et al. (2011)
WASP-23 5046 ± 99 prograde

Triaud et al. (2011)
WASP-24 6107 ± 77   −4.7   ±   4.0  
  −5.8   ±   4.1  


Simpson et al. (2011)
Smith et al. (2012)
WASP-25 5736 ± 35   14.6   ±   6.7  

Brown et al. (2012)
WASP-26 6015 ± 55 indeterminate
  −34   + 36   - 26  


Anderson et al. (2011)
Albrecht et al. (2012)
WASP-28 6084 ± 45   8   ±   18  

Anderson et al. (2015)
WASP-30 6190 ± 50   −7   + 27   - 19  

Triaud et al. (2013)
WASP-31 6175 ± 70   2.8   ±   3.1  
  −6   ±   6  


Brown et al. (2012)
Albrecht et al. (2012)
WASP-32 6100 ± 100   10.5   + 6.4   - 6.5  
  −2   + 17   - 19  

  11   ±   14  
Brown et al. (2012)
Brothwell et al. (2014)
WASP-33 7430 ± 100   252   ±   2  
  −110.06   + 0.40   - 0.27  
  −112.93   + 0.23   - 0.22  





  99   + 5   - 4  
  103   + 5   - 4  
Collier Cameron et al. (2010)
Johnson et al. (2015) 2008 data
Johnson et al. (2015) 2014 data
Iorio (2016) 2008 data
Iorio (2016) 2014 data
WASP-38 6150 ± 80   15   + 33   - 43  
  7.5   + 4.7   - 6.1  


Simpson et al. (2011)
Brown et al. (2012)
WASP-41 5546 ± 33   29   + 10   - 14  
  6   ±   11  


Neveu-VanMalle et al. (2016)
Southworth et al. (2016)
WASP-43 4520 ± 120   3.5   ±   6.8  
  0   + 20   - 0  
Esposito et al. (2017)
WASP-47b 5576 ± 67   0   ±   24  

Sanchis-Ojeda et al. (2015)
WASP-52 5000 ± 100   24   + 17   - 9  
  3.8   ±   8.4  

  20   ±   50  
Hébrard et al. (2013)
Mancini et al. (2016)
WASP-53 4950 ± 60   −1   ±   12  

Triaud et al. (2017)
WASP-61 6250 ± 150   4.0   + 17.1   - 18.4  

Brown et al. (2016)
WASP-62 6230 ± 80   19.4   + 5.1   - 4.9  

Brown et al. (2016)
WASP-66 6600 ± 150   −4   ±   22  

Addison et al. (2016)
WASP-71 6180 ± 52   20.1   ±   9.7  
  −1.9   + 7.1   - 7.5  


Smith et al. (2012)
Brown et al. (2016)
WASP-76 6250 ± 100 misaligned

Brown et al. (2016)
WASP-78 6100 ± 150   −6.4   ±   5.9  

Brown et al. (2016)
WASP-79 6600 ± 100   −106   + 19   - 13  
  −95.2   + 0.9   - 1.0  
  −99.1   + 4.1   - 3.9  



Addison et al. (2013)
Brown et al. (2016)
Johnson et al. (2017)
WASP-80 4145 ± 100   0   ±   20  
  −14   ±   14  


Triaud et al. (2013)
Triaud et al. (2015)
WASP-84 5280 ± 80   −0.3   ±   1.7  
  17.3   ±   7.7  
Anderson et al. (2015)
WASP-85 6112 ± 27   0   ±   14  

Mocnik et al. (2016)
WASP-87 6450 ± 120   −8   ±   11  

Addison et al. (2016)
WASP-94 6170 ± 80   151   + 16   - 23  

Neveu-VanMalle et al. (2014)
WASP-103 6110 ± 160   3   ±   33  

Addison et al. (2016)
WASP-107 4430 ± 120
  90   ±   50  
Dai et al. (2017)
WASP-111 6400 ± 150   −5   ±   16  

Anderson et al. (2014)
WASP-117 6040 ± 90   44   ±   11  
  69.5   + 3.6   - 3.1  
Lendl et al. (2013)
WASP-121 6460 ± 140   −257.8   + 5.5   - 5.3  

Delrez et al. (2015)
WASP-167 6900 ± 150   −165   ±   5  

Temple et al. (2017)
XO-2 5332 ± 57   10   ±   72  
  7   ±   11  

  27   + 12   - 27  
Narita et al. (2011)
Damasso et al. (2015)
XO-3 6429 ± 75   70   ±   15  
  37.3   ±   3.7  
  37.3   ±   3.0  



Hébrard et al. (2008)
Winn et al. (2009)
Hirano et al. (2011)
XO-4 6397 ± 70   −46.7   + 8.1   - 6.1  

Narita et al. (2010)

 


Last modified: 2017/09/23           John Southworth   (Keele University, UK)