Warm *Spitzer* occultation photometry of WASP-26b at 3.6 and 4.5 µm

D. P. Mahtani,1* P. F. L. Maxted,1 D. R. Anderson,1 A. M. S. Smith,1† B. Smalley,1 J. Tregloan-Reed,1 J. Southworth,1 N. Madhusudhan,2 A. Collier Cameron,3 M. Gillon,4 J. Harrington,5 C. Hellier,1 D. Pollacco,6 D. Queloz,7 A. H. M. J. Triaud7 and R. G. West8

1 Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG, UK
2 Department of Physics and Department of Astronomy, Yale University, New Haven, CT 06520-8101, USA
3 SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, Fife KY16 9SS, UK
4 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, 17, Bat. B5C, B-4000 Liège 1, Belgium
5 Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385, USA
6 Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
7 Observatoire astronomique de l’Université de Genève 51 ch. des Maillettes, 1290 Sauverny, Switzerland
8 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK

Received 2013 March 19; in original form 2012 December 20

ABSTRACT

We present new warm *Spitzer* occultation photometry of WASP-26 at 3.6 and 4.5 µm along with new transit photometry taken in the g, r and i bands. We report the first detection of the occultation of WASP-26b, with occultation depths at 3.6 and 4.5 µm of 0.001 26 ± 0.000 13 and 0.001 49 ± 0.000 16 corresponding to brightness temperatures of 1825 ± 80 and 1725 ± 89 K, respectively. We find that the eccentricity of the orbit is consistent with a circular orbit at the 1σ level (e = 0.0028 ± 0.0007, 3σ upper limit e < 0.04). According to the activity–inversion relation of Knutson et al., WASP-26b is predicted to host a thermal inversion. The brightness temperatures deduced from the eclipse depths are consistent with an isothermal atmosphere, although the planet may host a weak thermal inversion given the uncertainties on these values. The data are equally well fitted by atmospheric models with or without a thermal inversion. We find that variation in activity of solar-like stars does not change enough over the time-scales of months or years to change the interpretation of the Knutson et al. activity–inversion relation, provided that the measured activity level is averaged over several nights. Further data are required to fully constrain the thermal structure of the atmosphere because the planet lies very close to the boundary between atmospheres with and without a thermal inversion.

Key words: methods: data analysis – planets and satellites: atmospheres – stars: individual: WASP-26.

1 INTRODUCTION

The first detection of thermal emission from an exoplanet was reported by Deming et al. (2005) and Charbonneau et al. (2005). The teams observed the secondary eclipse of HD 209458 and TrES-1 using the *Spitzer Space Telescope*. Secondary eclipses of many other exoplanets have now been observed (e.g. Machalek et al. 2008; Anderson et al. 2011a; Todorov et al. 2012). Through the spectrophotometry of this event, observed using *Spitzer* and ground-based telescopes, we can build up the spectral energy distribution (SED) of the irradiated hemisphere (day side) of the planet. From the SED we can investigate the atmospheric properties of the day side of the planet. Secondary eclipse observations made with *Spitzer* have shown that some of these exoplanets have temperature inversions (Fortney et al. 2008; Knutson et al. 2009; Madhusudhan & Seager 2010). Thermal inversions are thought to form when gases exist in the upper atmosphere of these exoplanets that are efficient absorbers of optical and ultraviolet light (Fortney et al. 2008). This absorption of radiation causes the temperature of this region of the atmosphere to increase. Gases that have been hypothesized to cause thermal inversions are titanium oxide and vanadium oxide (Spiegel, Silverio & Burrows 2009) and sulphur compounds (Zahnle et al. 2009).

WASP-26b, discovered by Smalley et al. (2010) with SuperWASP (Pollacco et al. 2006), is a one Jupiter mass (1M_Jup) planet in a 2.8 d orbit around a G0 type star. WASP-26 also has a common...
Table 1. Summary of data used in this analysis.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Dates</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.2 m Swiss Telescope, La Silla, Chile)</td>
<td>2009 June 19–2009 August 22</td>
<td>Smalley et al. (2010)</td>
</tr>
<tr>
<td>30 RV spectra from HARPS</td>
<td>2010 September 12</td>
<td>Anderson et al. (2011b)</td>
</tr>
<tr>
<td>(HARPS Spectrograph, ESO 3.6 m telescope, La Silla, Chile)</td>
<td>2009 November 18</td>
<td>Smalley et al. (2010)</td>
</tr>
<tr>
<td>Full transit</td>
<td>2010 August 3</td>
<td>This Paper</td>
</tr>
<tr>
<td>(Pan-STARRS-z filter)</td>
<td>2010 August 7–2010 August 8</td>
<td>This Paper</td>
</tr>
<tr>
<td>Occultation (3.6 μm)</td>
<td>2010 August 20</td>
<td>This paper</td>
</tr>
<tr>
<td>(Spitzer channel 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occultation (4.5 μm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Spitzer channel 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full transit (g, r and i band)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Calar Alto Astronomical Observatory with BUSCA, Almería, Spain)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

proper motion companion 15 arcsec away (Smalley et al. 2010). Anderson et al. (2011b) conducted an investigation using the Rossiter–McLaughlin (R-M) effect to determine the sky-projected spin–orbit angle of the system. However, their results were inconclusive. Albrecht et al. (2012) constrained the spin–orbit angle of the system to $\lambda = -34^{+36}_{-26}$. In this paper, we present new warm Spitzer and ground-based photometry of WASP-26.

2 OBSERVATIONS

We present Spitzer (Werner et al. 2004) InfraRed Array Camera (IRAC; Fazio et al. 2004) channel 1 (3.6 μm) and channel 2 (4.5 μm) secondary eclipse (occultation) data taken on 2010 August 3 and 2010 September 7–8, respectively (PI: J Harrington, programme ID 60003). The Spitzer data were acquired in full array mode (256 × 256). Also presented are new full transit data in the g, r and i bands (taken simultaneously) using the 2.2 m telescope at the Calar Alto Astronomical Observatory with the Bonn University Simultaneous Camera (BUSCA) on 2010 August 20. BUSCA is a four channel CCD photometer with 4096 × 4096 pixels per CCD with a plate scale of 0.17 arcsec pixel$^{-1}$. The BUSCA transit data were obtained using defocused photometry (Southworth et al. 2009a, 2012), and BUSCA was used with a 256 × 1400 pixel window and 2 × 2 binning to reduce the readout time. Table 1 is a summary of the data that we have used in our analysis.

3 DATA REDUCTION

3.1 Transit data reduction

We used an IDL implementation of DAOPHOT (Stetson 1987) to perform synthetic aperture photometry on our BUSCA images, as in Southworth et al. (2009a). Light curves were obtained in the g, r and i bands. In all three bands, one comparison star was used. We used a target aperture of radius 24 pixels, a sky annulus of inner radius 70 pixels and an outer radius 100 pixels for the g, r and i bands. The wings of the point spread function (PSF) of the companion star do contaminate the target aperture, but the contribution to the observed flux is negligible. Iterative outlier removal was used on the image values in the sky annulus to remove the effect of the light from the wings of the companion’s PSF in the sky annulus. The light curves are shown in Fig. 1.

\begin{equation}
\text{Factor} = \frac{\text{Gain} \times \text{Exposure Time}}{\text{Flux Conversion Factor}}
\end{equation}

Aperture photometry was then conducted using the PHOT procedure in IRAF, using 21 aperture radii in the range 1.5–6 pixels and with a sky annulus of inner radius 8 pixels and outer radius 16 pixels. It was found that the stellar companion to WASP-26 and a bad column in channel 2 data were both inside the sky annulus. However, an iterative 3σ clipping was conducted which excludes those pixels. The error on the photometry was calculated from the photon statistics and the readout noise of the IRAC detectors. The readout noise values were taken from the IDL program SNIRAC_warm.pro, the

1 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
values for channels 1 and 2 are 9.87 and 9.4 electrons, respectively. The position of the target was measured by fitting a one-dimensional Gaussian to the marginal distributions of flux on x and y image axes. For each data set, the times of mid-exposure were converted to BJD$_{TDB}$ (Eastman, Siverd & Gaudi 2010) and for the occultation data the light travel time across the system (~40 s) was accounted for. The light travel time across the system was calculated using the semi-major axis from the output of our initial Markov chain Monte Carlo (MCMC) algorithm (Collier Cameron et al. 2007; Pollacco et al. 2008; Enoch et al. 2010). The input parameters for the star that were used in the MCMC analysis are $T_{\text{eff}} = 5950 \pm 100$ and $[\text{Fe/H}] = -0.02 \pm 0.09$ (Anderson et al. 2011b). Stellar density, which is directly constrained by the transit light curve and the spectroscopic orbit (Seager & Mallén-Ornelas 2003) and the eccentricity of the orbit, is calculated from the proposal parameter values. This is input, together with the latest values of T_{eff} and $[\text{Fe/H}]$ (which are controlled by Gaussian priors) into the empirical mass calibration of Enoch et al. (2010) to obtain an estimate of the stellar mass, M_\star. At each step in the MCMC procedure, each proposal parameter is perturbed from its previous value by a small, random amount. From the proposal parameters, model light and radial velocity (RV) curves are generated and χ^2 is calculated from their comparison with the data. A step is accepted if χ^2 (our merit function) is lower than for the previous step, and a step with higher χ^2 is accepted with probability $\exp(-\Delta \chi^2)$. In this way, the parameter space around the optimum solution is thoroughly explored. The value and uncertainty for each parameter are taken as the median and central 68.3 per cent confidence interval of the parameter’s marginalized posterior probability distribution, respectively (Ford 2006). The median closely approximates the χ^2 minimum for symmetric posteriors such as ours, and is more robust to noise in the case of flat minima. Table 2 show the proposal parameters of the MCMC. We did an initial run which included all the transit photometry, including the SuperWASP photometry, to get a good estimate of the epoch of mid-transit. This value along with its uncertainty was used as a Bayesian prior in subsequent MCMC runs which used all the photometry, including Spitzer, but excluding the SuperWASP photometry (to reduce computing time). The transit model used in the analysis was the small-planet approximation of Mandel & Agol (2002) with four-parameter limb darkening coefficients taken from Claret (2004). The limb darkening coefficients were determined using an initial interpolation in log g_\star and $[\text{Fe/H}]$ and an interpolation in T_{eff} at each MCMC step. The limb darkening parameters used for the best-fitting light curves are given in Table 3. For the secondary eclipse, we approximated the star and planet as two uniform discs of constant surface brightness. We fixed the projected spin–orbit angle to the value $\lambda = 0$ in our fit since the HARPS data covering the transit are negligibly affected by the R–M effect. The fit to the optical light curves (Fig. 1) shows that there is some red noise present in the g and i band light curves. We have accounted for the small additional uncertainty due to this noise in our quoted parameter standard errors rather than trying to find an arbitrary model that would improve the fit.

We checked for any correlations in our proposal parameters and only found the correlation between transit depth, width and impact parameter often seen in ground-based light curves. These correlations are caused by the blurring of the second and third contact points due to limb darkening in the optical light curves. These correlations do not affect our secondary eclipse depth measurements. These correlations are shown in Fig. 2. We also checked that our chain had converged, both by visual inspection and using the Gelman–Rubin statistic (Gelman et al. 2003; Ford 2006).

4.2 Trend functions and aperture size

Fig. 3 shows an example of the 3.6 μm light curve produced by the photometry in IRAF. There is a steep increase in the measured flux during the first part of the observation. This occurs because the telescope has slewed from its old position to its new position and is adjusting to a new equilibrium. We exclude the data that precedes HJD = 245 5447.37, to remove the major part of the initial ramp. It can be seen that there is a clear periodic trend in the data. This is due to the variation in the position of the target on the detector caused by flexure of the instrument as an electric heater is turned off and on. The IRAC detectors are known to exhibit inhomogeneous intrapixel sensitivity (e.g. Knutson et al. 2008), which means that different parts of the detector are more or less sensitive than others. This, along with the PSF movement, results in the measured flux varying depending on the position of the PSF on the detector. Also, when small apertures are used, pixelation occurs due to the undersampling of the PSF of the target (Anderson et al. 2011a). These systematics will be accounted for in the trend functions as described below. Fig. 4 shows an example of the 4.5 μm data which are less affected by these systematics even though (as it can be seen from Fig. 5) the radial motion of the PSF is greater at 4.5 μm than at 3.6 μm.

4 ANALYSIS

4.1 MCMC

We explored the parameter space using a Markov chain Monte Carlo (MCMC) algorithm (Collier Cameron et al. 2007; Pollacco et al. 2008; Enoch et al. 2010). The input parameters for the star that were used in the MCMC analysis are $T_{\text{eff}} = 5950 \pm 100$ and $[\text{Fe/H}] = -0.02 \pm 0.09$ (Anderson et al. 2011b). Stellar density, which is directly constrained by the transit light curve and the spectroscopic orbit (Seager & Mallén-Ornelas 2003) and the eccentricity of the orbit, is calculated from the proposal parameter values. This is input, together with the latest values of T_{eff} and $[\text{Fe/H}]$ (which are controlled by Gaussian priors) into the empirical mass calibration of Enoch et al. (2010) to obtain an estimate of the stellar mass, M_\star. At each step in the MCMC procedure, each proposal parameter is perturbed from its previous value by a small, random amount. From the proposal parameters, model light and radial velocity (RV) curves are generated and χ^2 is calculated from their comparison with the data. A step is accepted if χ^2 (our merit function) is lower than for the previous step, and a step with higher χ^2 is accepted with probability $\exp(-\Delta \chi^2)$. In this way, the parameter space around the optimum solution is thoroughly explored. The value and uncertainty for each parameter are taken as the median and central 68.3 per cent confidence interval of the parameter’s marginalized posterior probability distribution, respectively (Ford 2006). The median closely approximates the χ^2 minimum for symmetric posteriors such as ours, and is more robust to noise in the case of flat minima. Table 2 show the proposal parameters of the MCMC. We did an initial run which included all the transit photometry, including the SuperWASP photometry, to get a good estimate of the epoch of mid-transit. This value along with its uncertainty was used as a Bayesian prior in subsequent MCMC runs which used all the photometry, including Spitzer, but excluding the SuperWASP photometry (to reduce computing time). The transit model used in the analysis was the small-planet approximation of Mandel & Agol (2002) with four-parameter limb darkening coefficients taken from Claret (2004). The limb darkening coefficients were determined using an initial interpolation in log g_\star and $[\text{Fe/H}]$ and an interpolation in T_{eff} at each MCMC step. The limb darkening parameters used for the best-fitting light curves are given in Table 3. For the secondary eclipse, we approximated the star and planet as two uniform discs of constant surface brightness. We fixed the projected spin–orbit angle to the value $\lambda = 0$ in our fit since the HARPS data covering the transit are negligibly affected by the R–M effect. The fit to the optical light curves (Fig. 1) shows that there is some red noise present in the g and i band light curves. We have accounted for the small additional uncertainty due to this noise in our quoted parameter standard errors rather than trying to find an arbitrary model that would improve the fit.

We checked for any correlations in our proposal parameters and only found the correlation between transit depth, width and impact parameter often seen in ground-based light curves. These correlations are caused by the blurring of the second and third contact points due to limb darkening in the optical light curves. These correlations do not affect our secondary eclipse depth measurements. These correlations are shown in Fig. 2. We also checked that our chain had converged, both by visual inspection and using the Gelman–Rubin statistic (Gelman et al. 2003; Ford 2006).

4.2 Trend functions and aperture size

Fig. 3 shows an example of the 3.6 μm light curve produced by the photometry in IRAF. There is a steep increase in the measured flux during the first part of the observation. This occurs because the telescope has slewed from its old position to its new position and is adjusting to a new equilibrium. We exclude the data that precedes HJD = 245 5447.37, to remove the major part of the initial ramp. It can be seen that there is a clear periodic trend in the data. This is due to the variation in the position of the target on the detector caused by flexure of the instrument as an electric heater is turned off and on. The IRAC detectors are known to exhibit inhomogeneous intrapixel sensitivity (e.g. Knutson et al. 2008), which means that different parts of the detector are more or less sensitive than others. This, along with the PSF movement, results in the measured flux varying depending on the position of the PSF on the detector. Also, when small apertures are used, pixelation occurs due to the undersampling of the PSF of the target (Anderson et al. 2011a). These systematics will be accounted for in the trend functions as described below. Fig. 4 shows an example of the 4.5 μm data which are less affected by these systematics even though (as it can be seen from Fig. 5) the radial motion of the PSF is greater at 4.5 μm than at 3.6 μm.

2 http://ssc.spitzer.caltech.edu/warmmission/propkit/som/snrac_warm.pro

Figure 2. Correlation plots for selected proposal parameters from our MCMC analysis. For clarity we have only plotted a random 2 per cent of the chain values.

Figure 3. The raw light curve of the 3.6 \(\mu \)m Spitzer data extracted using an aperture of 2.4 pixels.

The general form of the trend functions that were used in our analysis is

\[
\Delta f = a_0 + a_1 \Delta x + a_2 \Delta y + a_{11} \Delta x \Delta y + a_{1x} \Delta x^2 \\
+ a_{2y} \Delta y^2 + a_t \Delta t,
\]

(2)

where \(\Delta f = f - \bar{f} \) is the stellar flux relative to its weighted mean, \(\Delta x = x - \bar{x} \) and \(\Delta y = y - \bar{y} \) are the coordinates of the PSF of the target centre relative to their weighted means, \(\Delta t \) is the time since the beginning of the observation, and \(a_0, a_1, a_2, a_{11}, a_{1x}, a_{2y} \) and \(a_t \) are coefficients which are free parameters in the MCMC analysis (Anderson et al. 2011a). For each set of trial light-curve model parameters, we calculate the residuals from the model and then calculate the coefficients of the detrending model using singular value decomposition applied to the entire data set. Initially, a linear-in-time and quadratic-in-space trend function was used on all 21 apertures to fit the secondary eclipse data. The rms of the residuals was used to determine the optimal aperture size. Once this was determined, combinations of no trend function, linear and quadratic trend functions in time and space were used on the best aperture to determine the best-fitting trend function.

Initially, this decorrelation was conducted using the positions measured by the one-dimensional Gaussian fit to the target. We also attempted to remove the trends in the data by decorrelating against the radial position (radial distance from the centre of the nearest pixel) instead of the \(x \) and \(y \) positions independently. The general trend function for the radial decorrelation is

\[
\Delta f = b_0 + b_1 r + b_2 r^2 + b_t \Delta t,
\]

(3)
where \(b_0, b_1, b_2, b_t \) are free parameters in the MCMC analysis and \(r \) is the radial distance from the centre of the nearest pixel centre. A third method that was attempted was to use target positions in the trend functions measured by fitting a two-dimensional circular Gaussian of fixed full width half-maximum (1.39 pixels in channel 1 and 1.41 pixels in channel 2) to a small region of the images containing the target.

To determine which trend function gave better results, we used the Bayesian information criterion (BIC; Schwarz 1978)

\[
\text{BIC} = \chi^2 + k \ln(n),
\]

where \(k \) is the number of free parameters and \(n \) is the number of data points. This method of determining how complicated a model to use only accepts a higher order trend function if the fit improves \(\chi^2 \) by \(\ln(n) \) or better for each additional free parameter.

Using the rms of the residuals it was found that the best aperture to use was 2.4 pixels in both channels. The system parameters are negligibly affected by the choice of aperture radius around this value. It was also found that the rms of the residuals to the channel 1 data was marginally lower when using the position measurements measured by the 2D circular Gaussian method as opposed to 1D Gaussian position measurements (0.002 995 compared to 0.003 054). The channel 2 data gave consistent rms irrespective of the position measurement used. The system parameters were consistent no matter which position measurement system was used. The results shown in Fig. 6 and Table 4 are those using the 2D circular Gaussian method, extracted from the 2.4 pixel aperture and trend functions as described below. We found that the radial decorrelation gave a worse fit to our data compared to that of \(x \) and \(y \) decorrelation (\(\chi^2 \) worse by \(\sim3000 \) at 3.6 \(\mu \)m and \(\sim400 \) at 4.5 \(\mu \)m).

Using equation (4) it was found that the quadratic-in-space with no time trend function gave the best fit to the data in channel 1 and that the linear-in-space with no time trend function gave the best fit to the data in channel 2. It was found that the addition of the quadratic term for the spatial decorrelation improved our BIC by \(\sim200 \) in channel 1 and less than \(\sim10 \) for more complicated models in both channels. We also detrended our data based only on the out-of-eclipse points to see if this affected our measured eclipse depths. It was found that the eclipse depths were consistent with our previous decorrelation.

5 RESULTS AND DISCUSSION

5.1 Eclipse depths and brightness temperatures

We find that the eclipse depths at 3.6 and 4.5 \(\mu \)m are 0.001 26 ± 0.000 13 and 0.001 49 ± 0.000 16, respectively. These eclipse depths correspond to brightness temperatures of 1825 ± 80 and 1725 ± 89 K. To find these blackbody temperatures, the expected flux ratios were calculated using Planck functions at different temperatures for the planet and synthetic spectra from stellar models (Kurucz 1991) for the star. These flux ratios were then integrated over the Spitzer band passes to calculate the expected measured flux ratio. The temperatures above correspond to the best-fitting Planck function temperature to the individual eclipse depths. The errors were calculated using a simple Monte Carlo method. These temperatures suggest that, on average, the emission at mid-infrared
Figure 6. Left: the raw light curves with the trend functions; the upper points denote the channel 2 data and the lower points denote the channel 1 data and the solid lines show the trend functions for each data set. Middle: binned light curves with trend models. Right: the binned light curve with trend function removed and best-fitting eclipse models (solid lines). The secondary eclipse can clearly be seen in both channels.

Table 4. System parameters from our MCMC analysis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol (unit)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbital period</td>
<td>P (d)</td>
<td>2.756 611 ±0.000 008</td>
</tr>
<tr>
<td>Epoch of mid-transit (BJD, TDB)</td>
<td>T_e</td>
<td>2455 424.108 99 ±0.000 12</td>
</tr>
<tr>
<td>Transit duration (from first to fourth contact)</td>
<td>T_{14} (d)</td>
<td>0.097 ±0.002</td>
</tr>
<tr>
<td>Duration of transit ingress ≈ duration of transit egress</td>
<td>$T_{12} \approx T_{34}$ (d)</td>
<td>0.024 ±0.002</td>
</tr>
<tr>
<td>Planet-to-star area ratio</td>
<td>$\Delta F = R_P^2/R_\star^2$</td>
<td>0.0103 ±0.0003</td>
</tr>
<tr>
<td>Impact parameter</td>
<td>b</td>
<td>0.82 ±0.02</td>
</tr>
<tr>
<td>Orbital inclination</td>
<td>i (°)</td>
<td>82.9 ±0.4</td>
</tr>
<tr>
<td>Centre-of-mass velocity</td>
<td>γ (km s$^{-1}$)</td>
<td>8.4593 ±0.0001</td>
</tr>
<tr>
<td>Argument of periastron</td>
<td>ω (°)</td>
<td>$-90^\circ \pm 20^\circ$</td>
</tr>
<tr>
<td></td>
<td>$e \cos \omega$</td>
<td>-0.0004 ± 0.0007</td>
</tr>
<tr>
<td></td>
<td>$e \sin \omega$</td>
<td>-0.0011 ± 0.0010</td>
</tr>
<tr>
<td></td>
<td>$e \sin \omega$</td>
<td>-0.0023 ± 0.0013</td>
</tr>
<tr>
<td></td>
<td>$e \cos \omega$</td>
<td>-0.0023 ± 0.0013</td>
</tr>
<tr>
<td></td>
<td>$e \sin \omega$</td>
<td>0.0010 ± 0.0021</td>
</tr>
<tr>
<td></td>
<td>$e \cos \omega$</td>
<td>0.0010 ± 0.0021</td>
</tr>
<tr>
<td>Star mass</td>
<td>M_\star (M$_\odot$)</td>
<td>1.10 ±0.03</td>
</tr>
<tr>
<td>Star radius</td>
<td>R_\star (R$_\odot$)</td>
<td>1.29 ±0.05</td>
</tr>
<tr>
<td>Star surface gravity</td>
<td>$\log g_\star$ (cgs)</td>
<td>4.26 ±0.03</td>
</tr>
<tr>
<td>Star density</td>
<td>ρ_\star (cgs)</td>
<td>0.52 ±0.06</td>
</tr>
<tr>
<td>Star effective temperature</td>
<td>T_{eff} (K)</td>
<td>6000±100</td>
</tr>
<tr>
<td>Star metallicity</td>
<td>[Fe/H]</td>
<td>-0.02 ± 0.09</td>
</tr>
<tr>
<td>Planet mass</td>
<td>M_P (M$_{\text{Jup}}$)</td>
<td>1.03±0.02</td>
</tr>
<tr>
<td>Planet radius</td>
<td>R_P (R$_{\text{Jup}}$)</td>
<td>1.27 ±0.07</td>
</tr>
<tr>
<td>Planet surface gravity</td>
<td>$\log g_P$ (cgs)</td>
<td>3.16 ±0.04</td>
</tr>
<tr>
<td>Planet density</td>
<td>ρ_P (ρ$_{\odot}$)</td>
<td>0.50 ±0.08</td>
</tr>
<tr>
<td>Semi-major axis</td>
<td>a (au)</td>
<td>0.0398 ±0.0003</td>
</tr>
<tr>
<td>Occultation depth at 3.6 μm</td>
<td>$\Delta F_{3.6}$</td>
<td>0.001 26 ±0.000 13</td>
</tr>
<tr>
<td>Occultation depth at 4.5 μm</td>
<td>$\Delta F_{4.5}$</td>
<td>0.001 49 ±0.000 16</td>
</tr>
<tr>
<td>Planet equilibrium temperature (full redistribution)a</td>
<td>$T_{P,A=0,f=1}$ (K)</td>
<td>1623 ±43</td>
</tr>
<tr>
<td>Planet equilibrium temperature (day-side redistribution)a</td>
<td>$T_{P,A=0,f=2}$ (K)</td>
<td>1930 ± 51</td>
</tr>
<tr>
<td>Planet equilibrium temperature (instant reradiation)a</td>
<td>$T_{P,A=0,f=0.5}$ (K)</td>
<td>2074 ± 55</td>
</tr>
</tbody>
</table>

aA is the albedo, $f = 1$ is defined as full redistribution, $f = 2$ is day-side redistribution and $f = \frac{1}{2}$ is instant reradiation as in Smith et al. (2011).
wavelengths from the irradiated hemisphere of WASP-26b is consistent with the spectrum of an isothermal atmosphere, with the possibility of a weak thermal inversion within the uncertainties on the brightness temperatures.

5.2 Atmospheric analysis

We model the day-side emergent spectrum of the hot Jupiter WASP-26b using the atmospheric modelling and retrieval technique of Madhusudhan & Seager (2009, 2010). The model computes line-by-line radiative transfer in a plane-parallel atmosphere in local thermodynamic equilibrium, and assumes hydrostatic equilibrium and global energy balance. The pressure–temperature (P–T) profile of the atmosphere and the chemical composition, i.e. the sources of molecular line opacity, are input parameters to the model. The model atmosphere includes the major sources of opacity expected in hot, hydrogen-dominated atmospheres, namely molecular absorption due to H_2O, CO, CH_4 and CO_2, and continuum opacity due to H_2–H collision-induced absorption. Our molecular line lists are discussed in Madhusudan & Seager (2009) and Smith et al. (2012). Given a photometric or spectral data set of thermal emission from the planet, we explore the space of atmospheric chemical composition and temperature structure to determine the regions in model space that explain, or are excluded by, the data (e.g. Madhusudhan et al. 2011). In the present case, however, the number of available data points ($N = 2$) is far below the number of model parameters ($N = 10$), implying that a unique model fit to the data is not feasible. Consequently, we nominally fixed the chemical composition of the models to that obtained with solar elemental abundances in thermochemical equilibrium (e.g. Burrows & Sharp 1999; Madhusudan 2012) for a given thermal profile, and explored the space of thermal profiles, with and without thermal inversions, that might explain the data.

Fig. 7 shows the 3.6 and 4.5 μm data along with the model spectra of atmospheres with and without a thermal inversion, and a blackbody model. All three models shown allow for very efficient day–night redistribution. We find that both our planet–star flux ratios can be explained by a planetary blackbody at around 1750 K. Consequently, the data are consistent with an isothermal atmosphere. However, an isothermal temperature profile may be unphysical in radiatively efficient atmospheres at low optical depth (e.g. Hansen 2008). A temperature profile with a non-zero thermal gradient, with or without a thermal inversion, may be more plausible. As shown in Fig. 7, the two data are fitted almost equally well by models with and without a thermal inversion, as shown by the red and green models, respectively. Further occultation depths measured at different wavelengths are required to break the degeneracies between the models and to determine the true nature of the atmosphere. It can be seen in Fig. 7 that there are some differences between the models with and without a thermal inversion at 1.25 (J band), 1.65 (H band) and 2.2 μm (K band). These wavelengths are accessible from the ground, so with measurements of the occultation depth at these wavelengths it may be possible to break the degeneracies between these models. Hubble Space Telescope WFC3 observations covering the wavelength range 1–1.7 μm can also be used to detect spectral features due to water either in emission or in absorption, and so distinguish between models with and without a thermal inversion (Madhusudan 2012; Swain et al. 2012). We emphasize that we have only presented two possible models here that represent the average properties of the irradiated hemisphere of WASP-26b.

5.3 Activity–inversion relation

Knutson, Howard & Isaacs (2010, hereafter K10) presented results which suggest that planets without thermal inversions orbit active stars, and those with inversions orbit inactive stars. This may be due to photodissociation of the opacity source in the upper atmosphere of the planet by the UV flux from the active stars (K10). It is known that solar-like stars have activity cycles on time-scales of approximately 10 yr. The Duncan et al. (1991) catalogue of S_{HK} activity measurements taken at the Mount Wilson Observatory was used to examine to what extent the activity of a star changes on short time-scales (of the order of months) and long time-scales (of the order of years). The aim was to determine if the variability in activity of the stars in the K10 sample was such that, in the time between the occultation observation and the measurement of $\log R'_{HK}$, the activity of the star can change enough to affect the interpretation of this activity–inversion relation. Recently, Montalto et al. (2012) showed that the activity of WASP-3 changed from $\log R'_{HK} = -4.95$ (less active) to -4.8 (more active) between 2007 and 2010. It has been shown by Menou & Rauscher (2009) that the time-scale for models of hot Jupiter atmospheres to go from their initial conditions to a statistical steady state was ~ 20 d. This suggests that the time-scale of hot Jupiter atmosphere variability is much shorter than the time-scale of stellar activity variability. More detailed modelling and additional observations are required to better understand whether variations in the UV irradiation can produce observable changes in the eclipse depths for planets near the boundary between atmospheres with and without strong thermal inversions.

We converted the S_{HK} measurements in Duncan et al. (1991) to $\log R'_{HK}$ using the method described by Noyes et al. (1984). A look-up table based on $\log R'_{HK}$ and $B - V$ colour for the stars in the Duncan et al. (1991) catalogue was then constructed. Using this table, the within-season variation of $\log R'_{HK}$ of the stars was used as a measure of the short-term variability in $\log R'_{HK}$ and the
This suggests that the variation in log R_{HK} and the long-term variability was between 0.02 and 0.06 dex. This is likely due to changes in UV irradiation. The value of log R_{HK} scale variation will move the star on the diagram but this may not strain the eccentricity of the orbit from timing of the secondary eclipse relative to transit. We find that the eccentricity of the orbit is small ($e = 0.0028_{-0.0022}^{+0.0007}$), which is consistent with a circular orbit at the 1σ level. We find a 3σ upper limit on the eccentricity of the planet's orbit of 0.0399 which is similar to Anderson et al. (2011b) 3σ upper limit of 0.048.

5.4 Eccentricity

From secondary eclipse measurements, it is also possible to constrain the eccentricity of the orbit from timing of the secondary eclipse relative to transit. We find that the eccentricity of the orbit is small ($e = 0.0028_{-0.0022}^{+0.0007}$), which is consistent with a circular orbit at the 1σ level. We find a 3σ upper limit on the eccentricity of the planet's orbit of 0.0399 which is similar to Anderson et al. (2011b) 3σ upper limit of 0.048.

6 CONCLUSION

In this paper, we present new warm Spitzer photometry of WASP-26 at 3.6 and 4.5 μm along with new transit photometry taken in the g, r, and i bands. We report the first detection of the occultation of WASP-26b with eclipse depths at 3.6 and 4.5 μm of 0.0013 ± 0.0001 and 0.00149 ± 0.00015, respectively, which correspond to brightness temperatures of 1825 ± 80 and 1725 ± 89 K. Our analysis shows that the atmosphere of WASP-26b is consistent with an isothermal atmosphere with the possibility of a weak thermal inversion (within the uncertainties on the brightness temperatures). If the K10 activity–inversion relation holds for WASP-26b, then we find an isothermal atmosphere with the possibility of a weak thermal inversion (within the uncertainties on the brightness temperatures).

Figure 8

Activity–inversion plot for the stars in K10. Points on the left of the dotted line (triangles) denote non-inverted planets around active stars and those on the right of the dotted line (squares) denote inverted planets around inactive stars. The point on the left-hand side of the plot shows the typical change in log R_{HK} (season to season), assuming measurements over several nights. The blue circle corresponds to WASP-26. The stars are listed in Table 5.

Table 5

<table>
<thead>
<tr>
<th>Star</th>
<th>Log(R'_{HK})</th>
<th>ζ value</th>
<th>R_p/R_*</th>
<th>Eclipse depth in channel 1</th>
<th>Eclipse depth in channel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRES-3</td>
<td>−4.549a</td>
<td>−0.0721 ± 0.0115</td>
<td>Southworth (2011)</td>
<td>Fressin et al. (2010)</td>
<td>Fressin et al. (2010)</td>
</tr>
<tr>
<td>WASP-4</td>
<td>−4.865b</td>
<td>−0.0961 ± 0.0457</td>
<td>Southworth et al. (2009b)</td>
<td>Beerer et al. (2011)</td>
<td>Beerer et al. (2011)</td>
</tr>
<tr>
<td>XO-1</td>
<td>−4.958b</td>
<td>−0.0135 ± 0.0127</td>
<td>Burke et al. (2010)</td>
<td>Machalek et al. (2008)</td>
<td>Machalek et al. (2008)</td>
</tr>
<tr>
<td>TRES-4</td>
<td>−5.104b</td>
<td>−0.0301 ± 0.0216</td>
<td>Southworth (2012)</td>
<td>Knutson et al. (2009)</td>
<td>Knutson et al. (2009)</td>
</tr>
<tr>
<td>COROT-1</td>
<td>−5.312b</td>
<td>0.0343 ± 0.0660</td>
<td>Southworth (2011)</td>
<td>Deming et al. (2011)</td>
<td>Deming et al. (2011)</td>
</tr>
<tr>
<td>WASP-18</td>
<td>−5.430b</td>
<td>0.0332 ± 0.0176</td>
<td>Southworth et al. (2009c)</td>
<td>Maxted et al. (2013)</td>
<td>Maxted et al. (2013)</td>
</tr>
<tr>
<td>HAT-P-7</td>
<td>−5.018b</td>
<td>0.0481 ± 0.0309</td>
<td>Southworth (2011)</td>
<td>Christiansen et al. (2010)</td>
<td>Christiansen et al. (2010)</td>
</tr>
<tr>
<td>WASP-26</td>
<td>−4.988b</td>
<td>−0.0200 ± 0.0229</td>
<td>This paper</td>
<td>This paper</td>
<td>This paper</td>
</tr>
</tbody>
</table>

aLog(R'_{HK}) value from Knutson et al. (2010).

bLog(R'_{HK}) value from Anderson et al. (2011b).
would expect it to host a thermal inversion. More secondary eclipse
data at different wavelengths, particularly near-IR secondary eclipse
depths near the peak of the planet’s SED, will be able to better
constrain the true nature of the atmosphere of WASP-26b.

ACKNOWLEDGEMENTS

DPM and JTR acknowledge the financial support from the Sci-
ence and Technology Facilities Council (STFC) in the form of
PhD studentships. JS acknowledges financial support from STFC
in the form of an Advanced Fellowship. This work is based in part
on observations made with the *Spitzer Space Telescope*, which is
operated by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with NASA. Support for this work was
provided in part by NASA through awards issued by JPL/Caltech
and by the Planetary Atmospheres Program, grant NNX12AI69G.
NM acknowledges support from the Yale Center for Astronomy and
Astrophysics (YCAA) at Yale University through the YCAA prize
postdoctoral fellowship.

REFERENCES

Deming D., Seager S., Richardson L. J., Harrington J., 2005, Nat, 434, 740
Dumusque X. et al., 2012, Nat, 491, 207
Madhusudhan N. et al., 2011, Nat, 469, 64
Pollacco D. et al., 2006, PASP, 118, 1407
Smalley B. et al., 2010, A&A, 520, A56
Southworth J. et al., 2009c, MNRAS, 408, 1680

This paper has been typeset from a TeX/LaTeX file prepared by the author.