OBSERVATIONAL STUDIES OF TRANSITING EXTRASOLAR PLANETS

John Southworth
Keele University, UK
Extrasolar planets – a history

- 1995: first extrasolar planet: 51 Peg
 - Mayor & Queloz (1995)

51 Peg velocity curve
Extrasolar planets – a history

- 1995: first extrasolar planet: **51 Peg**
 - Mayor & Queloz (1995)
- 1999: first transiting: **HD 209458**
 - Charbonneau et al. (2000)
 - Henry et al. (2000)
Extrasolar planets – a history

- 1995: first extrasolar planet: 51 Peg
 - Mayor & Queloz (1995)
- 1999: first transiting: HD 209458
 - Charbonneau et al. (2000)
 - Henry et al. (2000)
- 2002: first planet discovered from transits: OGLE-TR-56
 - Konacki et al. (2003)
Extrasolar planets – a history

- 1995: first extrasolar planet: 51 Peg
 - Mayor & Queloz (1995)

- 1999: first transiting: HD 209458
 - Charbonneau et al. (2000)
 - Henry et al. (2000)

- 2002: first planet discovered from transits: OGLE-TR-56
 - Konacki et al. (2003)

- Current census:
 - \(\approx 1800\) planets in total
 - \(\approx 1150\) are transiting

Velocities from Torres et al. (2004)
Sky positions of the known transiting extrasolar planets

The symbol size is larger for the brighter systems (roughly proportional to the apparent V magnitude)
Finding transits

- Dedicated robotic telescopes
 - e.g. SuperWASP
 - 8 cameras with 200 mm lenses
 - 483 deg^2 per observation
 - 14″ per pixel
Finding transits

- Dedicated robotic telescopes
 - e.g. SuperWASP
 - 8 cameras with 200 mm lenses
 - 483 deg2 per observation
 - 14” per pixel

- Light curves of millions of bright stars
 - SuperWASP: 18 million objects average 10,000 datapoints each
 - search for shallow transits
 - get many types of variable stars

WASP-South installation (South Africa)
Finding transits

- Dedicated robotic telescopes
 - e.g. SuperWASP
 - 8 cameras with 200 mm lenses
 - 483 deg^2 per observation
 - 14” per pixel

- Light curves of millions of bright stars
 - SuperWASP: 18 million objects average 10,000 datapoints each
 - search for shallow transits
 - get many types of variable stars

- Or go to space:
 - Past: *Kepler* and CoRoT
 - Future: TESS and PLATO
Are they planets?

- False positives: not all transits are due to planets
 - Eclipsing binaries can mimic planet transits
 - Low-mass stars and brown dwarfs can have similar radius as a planet
 - WASP-South claim success rate 1 in 14; *Kepler* much higher

Mass–radius plot from planets to low-mass stars
Are they planets?

- False positives: not all transits are due to planets
 - Eclipsing binaries can mimic planet transits
 - Low-mass stars and brown dwarfs can have similar radius as a planet
 - WASP-South claim success rate 1 in 14; *Kepler* much higher

- Solution: spectroscopy
 - Precise radial velocities give mass
 - Observables:
 - K_A: orbital velocity amplitude
 - e: orbital eccentricity
 - ω: argument of periastron

[HARPS spectrograph (credit: ESO)]
Are they planets?

- False positives: not all transits are due to planets
 - Eclipsing binaries can mimic planet transits
 - Low-mass stars and brown dwarfs can have similar radius as a planet
 - WASP-South claim success rate 1 in 14; *Kepler* much higher

- Solution: spectroscopy
 - Precise radial velocities give mass
 - Observables:
 - K_A: orbital velocity amplitude
 - e: orbital eccentricity
 - ω: argument of periastron
 - Also get nature of parent star:
 - T_{eff}: effective temperature
 - $\log g$: surface gravity
 - $[\text{Fe/H}]$: metallicity

HARPS spectrograph (credit: ESO)
Follow-up light curves

- Transit shape vital for analysis
 - directly yields stellar density
- Ground-based survey photometry usually very scattered
- Need follow-up light curves
Follow-up light curves

- Transit shape vital for analysis
 - directly yields stellar density
- Ground-based survey photometry usually very scattered
- Need follow-up light curves
- Telescope defocussing is excellent:
 - collect more photons per image
 - pixel response averaged out
 - tracking errors less important
Follow-up light curves

- Transit shape vital for analysis
 - directly yields stellar density
- Ground-based survey photometry usually very scattered
- Need follow-up light curves
- Telescope defocussing is excellent:
 - collect more photons per image
 - pixel response averaged out
 - tracking errors less important
- Example: WASP-103
 - orbital period 0.926 days
 - defocussed photometry: light curve scatter of 0.6 mmag

SuperWASP data for WASP-103 (Gillon et al., 2014)
PSFs in focus (left) and defocussed (right)
Follow-up light curve of WASP-103 (submitted)
Example: WASP-2

Discovery light curve
(Collier Cameron et al. 2007)
\(\sigma = 10 \text{ mmag} \)
Example: WASP-2

Discovery light curve
(Collier Cameron et al. 2007)
$\sigma = 10$ mmag

Charbonneau et al. (2007)
$\sigma = 1.9$ mmag
Example: WASP-2

Discovery light curve
(Collier Cameron et al. 2007)

\[\sigma = 10 \text{ mmag} \]

Charbonneau et al. (2007)

\[\sigma = 1.9 \text{ mmag} \]

Defocussed-photometry light curve
(Southworth et al. 2009)

\[\sigma = 0.46 \text{ mmag} \]
Anatomy of a transit light curve

Light curve gives: P_{orb} orbital period
Anatomy of a transit light curve

Light curve gives:

- P_{orb} orbital period
- $r_A = R_A/a$ fractional radius of star
Anatomy of a transit light curve

Light curve gives:

- P_{orb}: orbital period
- $r_A = R_A/a$: fractional radius of star
- $k = r_b/r_A$: ratio of planet to star radius
Anatomy of a transit light curve

Light curve gives:

- P_{orb}: orbital period
- $r_A = R_A/a$: fractional radius of star
- $k = r_b/r_A$: ratio of planet to star radius
- i: inclination of the orbit
Getting the physical properties

- Light curve: P_{orb} r_A k i
Getting the physical properties

- Light curve: P_{orb}, r_A, k, i
- Radial velocities:
 - stellar velocity amplitude K_A
 - orbital eccentricity e
 - can’t observe the velocity amplitude of the planet, K_b
Getting the physical properties

- Light curve: P_{orb}, r_A, k, i
- Radial velocities:
 - stellar velocity amplitude K_A
 - orbital eccentricity e
 - can’t observe the velocity amplitude of the planet, K_b
- Spectral synthesis: stellar T_{eff} and $[\text{Fe/H}]$
Getting the physical properties

- **Light curve:** \(P_{\text{orb}} \) \(r_A \) \(k \) \(i \)
- **Radial velocities:**
 - stellar velocity amplitude \(K_A \)
 - orbital eccentricity \(e \)
 - can’t observe the velocity amplitude of the planet, \(K_b \)
- **Spectral synthesis:** stellar \(T_{\text{eff}} \) and \([\frac{\text{Fe}}{\text{H}}] \)
- **Interpolate in stellar models:**
 - find best-fitting mass for the star
 - find most likely age for the system
Getting the physical properties

- Light curve: P_{orb}, r_A, k, i
- Radial velocities:
 - stellar velocity amplitude K_A
 - orbital eccentricity e
 - can’t observe the velocity amplitude of the planet, K_b
- Spectral synthesis: stellar T_{eff} and $[\frac{\text{Fe}}{\text{H}}]$
- Interpolate in stellar models:
 - find best-fitting mass for the star
 - find most likely age for the system
- Get planet mass and radius
 ⇒ surface gravity ⇒ atmosphere studies
 ⇒ density ⇒ composition and core size
 ⇒ composition and core size ⇒ formation scenario
Getting the physical properties

- Light curve: P_{orb}, r_A, k, i
- Radial velocities:
 - stellar velocity amplitude K_A
 - orbital eccentricity e
 - can’t observe the velocity amplitude of the planet, K_b
- Spectral synthesis: stellar T_{eff} and $[\text{Fe} / \text{H}]$
- Interpolate in stellar models:
 - find best-fitting mass for the star
 - find most likely age for the system
- Get planet mass and radius
 \Rightarrow surface gravity \Rightarrow atmosphere studies
 \Rightarrow density \Rightarrow composition and core size
 \Rightarrow composition and core size \Rightarrow formation scenario
The additional constraint

• One additional constraint is needed
 – Observations do not give an unique solution for the physical properties
 – Theoretical stellar models are usually used ⇒ results are not empirical
The additional constraint

- One additional constraint is needed
 - Observations do not give an unique solution for the physical properties
 - Theoretical stellar models are usually used ⇒ results are not empirical

- Solution: calibrations from eclipsing binaries
 - First try: $M-R$ relation
The additional constraint

- One additional constraint is needed
 - Observations do not give an unique solution for the physical properties
 - Theoretical stellar models are usually used ⇒ results are not empirical

- Solution: calibrations from eclipsing binaries
 - First try: M–R relation
 - M and R from T_{eff}, $\log g$, $[\text{Fe}/\text{H}]$
 (Torres et al., 2010, A&ARv, 18, 67)
The additional constraint

- One additional constraint is needed
 - Observations do not give an unique solution for the physical properties
 - Theoretical stellar models are usually used \Rightarrow results are not empirical

- Solution: calibrations from eclipsing binaries
 - First try: $M-R$ relation
 - M and R from T_{eff}, $\log g$, $\left[\frac{\text{Fe}}{\text{H}}\right]$
 (Torres et al., 2010, A&ARv, 18, 67)
 - M and R from T_{eff}, ρ, $\left[\frac{\text{Fe}}{\text{H}}\right]$
 (Enoch et al., 2010, A&A, 516, A33)
The additional constraint

- One additional constraint is needed
 - Observations do not give a unique solution for the physical properties
 - Theoretical stellar models are usually used ⇒ results are not empirical

- Solution: calibrations from eclipsing binaries
 - First try: M–R relation
 - M and R from T_{eff}, $\log g$, $[\text{Fe/H}]$
 (Torres et al., 2010, A&ARv, 18, 67)
 - M and R from T_{eff}, ρ, $[\text{Fe/H}]$
 (Enoch et al., 2010, A&A, 516, A33)
 - Use 90 rather than 19 dEBs
The additional constraint

• One additional constraint is needed
 – Observations do not give an unique solution for the physical properties
 – Theoretical stellar models are usually used \(\Rightarrow\) results are not empirical

• Solution: calibrations from eclipsing binaries
 – First try: \(M-R\) relation
 – \(M\) and \(R\) from \(T_{\text{eff}}, \log g, \left[\frac{\text{Fe}}{\text{H}}\right]\)
 (Torres et al., 2010, A&ARv, 18, 67)
 – \(M\) and \(R\) from \(T_{\text{eff}}, \rho, \left[\frac{\text{Fe}}{\text{H}}\right]\)
 (Enoch et al., 2010, A&A, 516, A33)
 – Use 90 rather than 19 dEBs

• Do we believe eclipsing binaries?
Alternatives

- Transit timing variations (TTVs):
 - gravitational perturbations shift transit times
 - transit times give planet masses
 - problems: difficult minimisation, low precision
 - only worked for *Kepler* planets so far: e.g. Kepler-11, Kepler-51
Alternatives

- Transit timing variations (TTVs):
 - gravitational perturbations shift transit times
 - transit times give planet masses
 - problems: difficult minimisation, low precision
 - only worked for Kepler planets so far: e.g. Kepler-11, Kepler-51

- Planet validation:
 - shallow transits unlikely to be false positives
 - calculate probabilities of each type of false positive
 - e.g. 851 Kepler planets validated (Rowe et al., 2014, ApJ, 784, 45)
Alternatives

- Transit timing variations (TTVs):
 - gravitational perturbations shift transit times
 - transit times give planet masses
 - problems: difficult minimisation, low precision
 - only worked for Kepler planets so far: e.g. Kepler-11, Kepler-51

- Planet validation:
 - shallow transits unlikely to be false positives
 - calculate probabilities of each type of false positive
 - e.g. 851 Kepler planets validated (Rowe et al., 2014, ApJ, 784, 45)

- Doppler beaming:
 - stars are brighter when moving towards us
 - detecting this gives planet mass
 - e.g. Kepler-76 (Faigler et al., 2013, ApJ, 771, 26)
Total number of transiting planets: 1142
Homogeneous studies of transiting planets

- Light curve fit: JKTEBOP
- Limb darkening:
 - five different laws
- Contaminating light
- Numerical integration

Light curve of WASP-2 (Southworth et al. 2009)
Homogeneous studies of transiting planets

- Light curve fit: JKTEBOP
- Limb darkening:
 - five different laws
- Contaminating light
- Numerical integration
- Error analyses
 - white noise: Monte Carlo
 - red noise: residual permutation

Light curve of WASP-2 (Southworth et al. 2009)
Homogeneous studies of transiting planets

- Light curve fit: Jktebop
- Limb darkening:
 - five different laws
- Contaminating light
- Numerical integration
- Error analyses
 - white noise: Monte Carlo
 - red noise: residual permutation
- Physical properties:
 - additional constraint: five different stellar theoretical models
 - results also using an eclipsing binary calibration
Homogeneous studies of transiting planets

- Light curve fit: JKTEBOP
- Limb darkening:
 - five different laws
- Contaminating light
- Numerical integration
- Error analyses
 - white noise: Monte Carlo
 - red noise: residual permutation
- Physical properties:
 - additional constraint: five different stellar theoretical models
 - results also using an eclipsing binary calibration
- Now done 114 transiting systems
TEPCat is a catalogue of the physical properties of the known transiting extrasolar planet and brown dwarf systems. All parts of the catalogue are available as HTML tables, with and without errorbars, and machine-readable ASCII and CSV files for detailed analysis. Most of numbers are a careful compilation of literature results, and the remainder come from my Homogeneous Studies of Transiting Extrasolar Planets papers.

- All transiting planets (html/ascii/csv)
- Homogeneous Studies (html/ascii/csv)
- For planning observations (html/ascii/csv)
- Rossiter-McLaughlin catalogue (html/ascii/csv)

http://www.astro.keele.ac.uk/jkt/tepcat/
<table>
<thead>
<tr>
<th>System</th>
<th>Orbital period</th>
<th>Eccentricity</th>
<th>Semimajor axis (AU)</th>
<th>Teff (K)</th>
<th>[Fe/H] (dex)</th>
<th>Mass (Msun)</th>
<th>Radius (Rsun)</th>
<th>log(g) (cgs)</th>
<th>Density (psun)</th>
<th>Mass (Mjup)</th>
<th>Radius (Rjup)</th>
<th>Gravity (m/s²)</th>
<th>Density (ρjup)</th>
<th>Equil Temp</th>
<th>Discovery reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 Cnc e</td>
<td>0.737</td>
<td>0.057</td>
<td>0.01584</td>
<td>5196</td>
<td>+0.31</td>
<td>0.905</td>
<td>0.943</td>
<td>4.43</td>
<td>(1.08)</td>
<td>0.0263</td>
<td>0.1939</td>
<td>(17.3)</td>
<td>3.39</td>
<td>(1945)</td>
<td>2011ApJ...737L</td>
</tr>
<tr>
<td>CoRoT-1</td>
<td>1.509</td>
<td>0.0</td>
<td>0.02536</td>
<td>5950</td>
<td>-0.30</td>
<td>0.95</td>
<td>1.131</td>
<td>4.311</td>
<td>0.660</td>
<td>1.03</td>
<td>1.551</td>
<td>10.65</td>
<td>0.259</td>
<td>191.5</td>
<td>2008A&A...482</td>
</tr>
<tr>
<td>CoRoT-2</td>
<td>1.743</td>
<td>0.0143</td>
<td>0.02835</td>
<td>5588</td>
<td>+0.04</td>
<td>0.987</td>
<td>0.901</td>
<td>4.527</td>
<td>1.382</td>
<td>3.57</td>
<td>1.460</td>
<td>41.5</td>
<td>1.073</td>
<td>1521</td>
<td>2008A&A...482</td>
</tr>
<tr>
<td>CoRoT-3</td>
<td>4.257</td>
<td>0.0</td>
<td>0.05783</td>
<td>6740</td>
<td>-0.02</td>
<td>1.403</td>
<td>1.575</td>
<td>4.191</td>
<td>0.359</td>
<td>21.96</td>
<td>1.037</td>
<td>506</td>
<td>18.4</td>
<td>1595</td>
<td>2008A&A...491</td>
</tr>
<tr>
<td>CoRoT-4</td>
<td>9.202</td>
<td>0.0</td>
<td>0.06120</td>
<td>6190</td>
<td>+0.05</td>
<td>1.194</td>
<td>1.148</td>
<td>4.396</td>
<td>0.790</td>
<td>0.731</td>
<td>1.160</td>
<td>13.5</td>
<td>0.438</td>
<td>1058</td>
<td>2008A&A...488</td>
</tr>
<tr>
<td>CoRoT-5</td>
<td>4.038</td>
<td>0.0</td>
<td>0.05004</td>
<td>6100</td>
<td>-0.25</td>
<td>1.025</td>
<td>1.0516</td>
<td>4.405</td>
<td>0.88</td>
<td>0.489</td>
<td>1.182</td>
<td>8.3</td>
<td>0.266</td>
<td>1348</td>
<td>2009A&A...506</td>
</tr>
<tr>
<td>CoRoT-6</td>
<td>8.887</td>
<td>0.0</td>
<td>0.0855</td>
<td>6090</td>
<td>-0.20</td>
<td>1.054</td>
<td>1.043</td>
<td>4.425</td>
<td>0.929</td>
<td>2.96</td>
<td>1.185</td>
<td>52.3</td>
<td>1.66</td>
<td>1025</td>
<td>2010A&A...512</td>
</tr>
<tr>
<td>CoRoT-7</td>
<td>0.854</td>
<td>0.0</td>
<td>0.01702</td>
<td>5259</td>
<td>+0.138</td>
<td>0.913</td>
<td>0.820</td>
<td>4.573</td>
<td>1.871</td>
<td>0.0181</td>
<td>0.1414</td>
<td>21.5</td>
<td>5.7</td>
<td>1758</td>
<td>2009A&A...506</td>
</tr>
<tr>
<td>CoRoT-8</td>
<td>6.212</td>
<td>0.0</td>
<td>0.0633</td>
<td>5080</td>
<td>+0.31</td>
<td>0.878</td>
<td>0.898</td>
<td>4.475</td>
<td>1.21</td>
<td>0.216</td>
<td>0.712</td>
<td>10.6</td>
<td>0.56</td>
<td>922</td>
<td>2010A&A...520</td>
</tr>
<tr>
<td>CoRoT-9</td>
<td>95.274</td>
<td>0.11</td>
<td>0.402</td>
<td>5613</td>
<td>-0.02</td>
<td>0.960</td>
<td>0.938</td>
<td>4.476</td>
<td>1.16</td>
<td>0.826</td>
<td>1.037</td>
<td>19.1</td>
<td>0.69</td>
<td>413</td>
<td>2010Natur.464</td>
</tr>
<tr>
<td>CoRoT-10</td>
<td>13.241</td>
<td>0.53</td>
<td>0.1080</td>
<td>5075</td>
<td>+0.26</td>
<td>0.904</td>
<td>0.743</td>
<td>4.682</td>
<td>2.20</td>
<td>2.78</td>
<td>0.941</td>
<td>78</td>
<td>3.13</td>
<td>647</td>
<td>2010A&A...520</td>
</tr>
<tr>
<td>CoRoT-11</td>
<td>2.994</td>
<td>0.0</td>
<td>0.0440</td>
<td>6440</td>
<td>-0.03</td>
<td>1.26</td>
<td>1.374</td>
<td>4.264</td>
<td>0.488</td>
<td>2.34</td>
<td>1.426</td>
<td>26.5</td>
<td>0.76</td>
<td>1735</td>
<td>2010A&A...524</td>
</tr>
<tr>
<td>CoRoT-12</td>
<td>2.828</td>
<td>0.0</td>
<td>0.0394</td>
<td>5675</td>
<td>+0.16</td>
<td>1.018</td>
<td>1.048</td>
<td>4.407</td>
<td>0.889</td>
<td>0.887</td>
<td>1.350</td>
<td>12.1</td>
<td>0.337</td>
<td>1410</td>
<td>2010A&A...520</td>
</tr>
<tr>
<td>CoRoT-13</td>
<td>4.035</td>
<td>0.0</td>
<td>0.0510</td>
<td>5945</td>
<td>+0.01</td>
<td>1.086</td>
<td>1.274</td>
<td>4.264</td>
<td>0.526</td>
<td>1.312</td>
<td>1.252</td>
<td>20.7</td>
<td>0.62</td>
<td>1432</td>
<td>2010A&A...522</td>
</tr>
<tr>
<td>CoRoT-14</td>
<td>1.512</td>
<td>0.0</td>
<td>0.02687</td>
<td>6035</td>
<td>+0.05</td>
<td>1.125</td>
<td>1.19</td>
<td>4.336</td>
<td>0.57</td>
<td>7.67</td>
<td>1.018</td>
<td>183</td>
<td>6.8</td>
<td>1936</td>
<td>2011A&A...526</td>
</tr>
<tr>
<td>CoRoT-15</td>
<td>3.080</td>
<td>0.0</td>
<td>0.0458</td>
<td>6350</td>
<td>-0.1</td>
<td>1.31</td>
<td>1.38</td>
<td>4.288</td>
<td>0.52</td>
<td>84.9</td>
<td>1.045</td>
<td>1470</td>
<td>53</td>
<td>1870</td>
<td>2011A&A...525</td>
</tr>
<tr>
<td>CoRoT-16</td>
<td>5.352</td>
<td>0.33</td>
<td>0.0618</td>
<td>5850</td>
<td>+0.18</td>
<td>1.098</td>
<td>1.19</td>
<td>4.36</td>
<td>0.86</td>
<td>0.535</td>
<td>1.17</td>
<td>(9.7)</td>
<td>0.33</td>
<td>(1195)</td>
<td>2012A&A...541</td>
</tr>
<tr>
<td>CoRoT-17</td>
<td>3.788</td>
<td>0.0</td>
<td>0.04810</td>
<td>5740</td>
<td>+0.0</td>
<td>1.043</td>
<td>1.62</td>
<td>4.035</td>
<td>0.243</td>
<td>2.46</td>
<td>1.007</td>
<td>60</td>
<td>2.26</td>
<td>1610</td>
<td>2011A&A...531</td>
</tr>
<tr>
<td>CoRoT-18</td>
<td>1.900</td>
<td>0.0</td>
<td>0.02860</td>
<td>5440</td>
<td>-0.1</td>
<td>0.861</td>
<td>0.924</td>
<td>4.442</td>
<td>1.09</td>
<td>3.27</td>
<td>1.251</td>
<td>51.8</td>
<td>1.56</td>
<td>1490</td>
<td>2011A&A...533</td>
</tr>
<tr>
<td>CoRoT-19</td>
<td>3.897</td>
<td>0.0</td>
<td>0.0512</td>
<td>6090</td>
<td>-0.02</td>
<td>1.181</td>
<td>1.578</td>
<td>4.115</td>
<td>0.302</td>
<td>1.090</td>
<td>1.190</td>
<td>19.1</td>
<td>0.60</td>
<td>1630</td>
<td>2012A&A...537</td>
</tr>
</tbody>
</table>

http://www.astro.keele.ac.uk/jkt/tepcat/
TEPCat

[Image of the TEPCat table]

http://www.astro.keele.ac.uk/jkt/tepcat/
TEPCat

![TEPCat](http://www.astro.keele.ac.uk/jkt/tepcat/)

Table of Rossiter-McLaughlin Effect Observations of Transiting Planets

<table>
<thead>
<tr>
<th>System</th>
<th>Teff (K)</th>
<th>λ (degrees)</th>
<th>ψ (degrees)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 Cnc e</td>
<td>5196 ± 24</td>
<td>72.4 ± 23.7, -11.5</td>
<td>indeterminate</td>
<td>Bourrier & Hébrard (2014), López-Morales et al. (2014)</td>
</tr>
<tr>
<td>CoRoT-1</td>
<td>5650 ± 150</td>
<td>77 ± 11</td>
<td></td>
<td>Pont et al. (2010)</td>
</tr>
<tr>
<td>CoRoT-2</td>
<td>5598 ± 50</td>
<td>7.2 ± 4.5, 4.0 ± 5.9</td>
<td>6.1</td>
<td>Bouchy et al. (2008), Gillon et al. (2010)</td>
</tr>
<tr>
<td>CoRoT-3</td>
<td>6740 ± 140</td>
<td>37.6 ± 10.0, -22.3</td>
<td></td>
<td>Triaud et al. (2009)</td>
</tr>
<tr>
<td>CoRoT-11</td>
<td>6440 ± 120</td>
<td>prograde</td>
<td>0.1 ± 2.6</td>
<td>Gandolfi et al. (2010), Gandolfi et al. (2012)</td>
</tr>
<tr>
<td>CoRoT-18</td>
<td>5440 ± 100</td>
<td>-10 ± 20</td>
<td>20 ± 20</td>
<td>Hébrard et al. (2011)</td>
</tr>
<tr>
<td>CoRoT-19</td>
<td>6090 ± 70</td>
<td>-52 ± 27, -22</td>
<td></td>
<td>Guenther et al. (2011)</td>
</tr>
<tr>
<td>HAT-P-1</td>
<td>5975 ± 50</td>
<td>3.7 ± 2.1</td>
<td></td>
<td>Johnson et al. (2008)</td>
</tr>
<tr>
<td>HAT-P-2</td>
<td>6290 ± 60</td>
<td>1.2 ± 13.4, 0.2 ± 12.2</td>
<td>9 ± 10</td>
<td>Winn et al. (2007), Loeillet et al. (2008), Albrecht et al. (2012)</td>
</tr>
<tr>
<td>HAT-P-4</td>
<td>5860 ± 80</td>
<td>-4.9 ± 11.9</td>
<td></td>
<td>Winn et al. (2011)</td>
</tr>
<tr>
<td>HAT-P-6</td>
<td>6570 ± 80</td>
<td>166 ± 10, 160 ± 6</td>
<td></td>
<td>Hébrard et al. (2011), Albrecht et al. (2012)</td>
</tr>
<tr>
<td>HAT-P-7</td>
<td>6310 ± 15</td>
<td>182.5 ± 9.4, -132.6 ± 10.5, -16.3</td>
<td>155 ± 37, 220.3 ± 8.2, 9.3</td>
<td>Winn et al. (2009), Narita et al. (2009), Albrecht et al. (2012), Benomar et al. (2014), Lund et al. (2014)</td>
</tr>
<tr>
<td>HAT-P-9</td>
<td>6350 ± 150</td>
<td>-16 ± 8</td>
<td></td>
<td>Moutou et al. (2011), Winn et al. (2010)</td>
</tr>
</tbody>
</table>

[Source](http://www.astro.keele.ac.uk/jkt/tepcat/)
Rossiter-McLaughlin effect

- Spectroscopic anomaly during transit
 - transiting planet blocks out part of the rotating stellar surface
 - spectral line broadening no longer symmetric
 - causes radial velocity anomaly

Rossiter-McLaughlin effect

- Spectroscopic anomaly during transit
 - transiting planet blocks out part of the rotating stellar surface
 - spectral line broadening no longer symmetric
 - causes radial velocity anomaly

- Anomaly shape depends on orbital obliquity, ψ
 - ψ is angle between orbital axis and stellar spin axis
 - we actually measure λ, the sky-projected obliquity
 - RM is a window on the dynamical history
Rossiter-McLaughlin measurements for transiting extrasolar planets

Sky-projected orbital obliquity λ (degrees)

Host star effective temperature (K)
Orbital obliquity from starspots

- Starspots cause mini-brightenings during transit
 - measure spot position, size and brightness
 - multiple observations give spot motion
 - can yield orbital obliquity

Starspot anomalies in transits of WASP-19
Orbital obliquity from starspots

- Starspots cause mini-brightenings during transit
 - measure spot position, size and brightness
 - multiple observations give spot motion
 - can yield orbital obliquity
- Example: WASP-19
 - $\lambda = 1.0 \pm 1.2$ degrees
 - three anomalies could give ψ

Occultations

- Planet passes behind star
 - drop in brightness gives flux from dayside of planet
 - infrared: thermal emission
 - optical: reflected starlight

Spitzer light curves of occultations in the HD 189733 system (Charbonneau et al., 2008, ApJ, 686, 1341)
Occultations

- Planet passes behind star
 - drop in brightness gives flux from dayside of planet
 - infrared: thermal emission
 - optical: reflected starlight
- most from the *Spitzer* satellite
 - ground-based detections possible
 (e.g. Lendl et al., 2013, A&A, 552, A2)

Spitzer light curves of occultations in the HD 189733 system
Occultations

- Planet passes behind star
 - drop in brightness gives flux from dayside of planet
 - infrared: thermal emission
 - optical: reflected starlight
- most from the *Spitzer* satellite
 - ground-based detections possible (e.g. Lendl et al., 2013, A&A, 552, A2)
- Time of occultation gives $e \cos \omega$: lower limit on orbital eccentricity

Spitzer light curves of occultations in the HD 189733 system (Charbonneau et al., 2008, ApJ, 686, 1341)
Transmission spectroscopy

- Observe transit at multiple wavelengths
 - opacity changes affect the radius measured from transits
 - measure opacity at limb of the planet

Transmission spectroscopy

- Observe transit at multiple wavelengths
 - opacity changes affect the radius measured from transits
 - measure opacity at limb of the planet

- Results
 - some planets have large radii in the blue \(\Rightarrow \) Rayleigh or Mie scattering
 - some planets have a featureless spectrum \(\Rightarrow \) clouds
 - some planets show VO, TiO and Na in the optical
 - some planets show H\(_2\)O, CO\(_2\), CH\(_4\) in the infrared

Transmission spectrum of HD 189733 b
Future – from the ground

- Current surveys
 - WASP, HAT, HAT-South, KELT
Future – from the ground

- Current surveys
 - WASP, HAT, HAT-South, KELT

- Forthcoming: NGTS
 - Next Generation Transit Survey
 - near-infrared survey
 - aim: Neptune-size planets
Future – from space

- Continue to exploit *Kepler* and CoRoT data
 - *Kepler* has thousands more candidates
 - CoRoT has another ~ 20 objects
Future – from space

- Continue to exploit *Kepler* and CoRoT data
 - *Kepler* has thousands more candidates
 - CoRoT has another ~20 objects

- CHEOPS is funded (will observe RV planets)
Future – from space

- Continue to exploit *Kepler* and CoRoT data
 - *Kepler* has thousands more candidates
 - CoRoT has another ~ 20 objects
- CHEOPS is funded (will observe RV planets)
- TESS will launch in 2017 and observe for 2 yr
Future – from space

• Continue to exploit Kepler and CoRoT data
 – Kepler has thousands more candidates
 – CoRoT has another ∼20 objects

• CHEOPS is funded (will observe RV planets)

• TESS will launch in 2017 and observe for 2 yr

• GAIA is launched and data come soon
 – Trigonometric distances to 10^9 stars
 – Provide the additional constraint
Future – from space

- Continue to exploit *Kepler* and CoRoT data
 - *Kepler* has thousands more candidates
 - CoRoT has another ~ 20 objects
- CHEOPS is funded (will observe RV planets)
- TESS will launch in 2017 and observe for 2 yr
- GAIA is launched and data come soon
 - Trigonometric distances to 10^9 stars
 - Provide the *additional constraint*
- PLATO (2022-2024)
Future follow-up

- High-stability spectrographs
 - RV precision to 10 cm s$^{-1}$: VLT/Espresso (Pepe et al., 2014AN....335....8P)
 - RV precision to 2 cm s$^{-1}$: E-ELT/Codex
Future follow-up

- High-stability spectrographs
 - RV precision to $10 \, \text{cm s}^{-1}$: VLT/Espresso (Pepe et al., 2014AN....335....8P)
 - RV precision to $2 \, \text{cm s}^{-1}$: E-ELT/Codex

- JWST: infrared telescope
 - MIRI: 5–28 μm
 - NIRSpec: 0.6–5 μm
 - occultation and transmission spectroscopy
 - atmospheres of *habitable* transiting planets
Summary

- Transiting planets are good
 - only way to get mass, radius, density, surface gravity
 - still need to understand host stars
Summary

• Transiting planets are good
 – only way to get mass, radius, density, surface gravity
 – still need to understand host stars

• 1150 transiting planets known
 – detection rate still increasing
 – ground-based: interesting oddballs
 – space-based: faint and less understood
Summary

• Transiting planets are good
 – only way to get mass, radius, density, surface gravity
 – still need to understand host stars

• 1150 transiting planets known
 – detection rate still increasing
 – ground-based: interesting oddballs
 – space-based: faint and less understood

• Now and soon:
 – more planets
 – *Kepler* and ground-based surveys
 – ESPRESSO for follow-up
Summary

- Transiting planets are good
 - only way to get mass, radius, density, surface gravity
 - still need to understand host stars
- 1150 transiting planets known
 - detection rate still increasing
 - ground-based: interesting oddballs
 - space-based: faint and less understood
- Now and soon:
 - more planets
 - *Kepler* and ground-based surveys
 - ESPRESSO for follow-up
- Future:
 - TESS, CHEOPS, PLATO
 - JWST and ELT RV machines