High-precision photometry by telescope defocussing. II. The transiting planetary system WASP-4 (Appendix)

John Southworth1, T. C. Hinse2,3, M. J. Burgdorf4, M. Dominik5,*, A. Hornstrup6, U. G. Jørgensen2, C. Liebig7, D. Ricci8, C. C. Thöne9,10, T. Anguita7, V. Bozza11,12, S. Calchi Novati11,12, K. Harpsøe2, L. Mancini11,12, G. Masi13, M. Mathiasen2, S. Rahvar14, G. Scarpetta11,12, C. Snodgrass15, J. Surdej8, M. Zub7

1Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
2Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, Copenhagen Ø, 2100, Denmark
3Armagh Observatory, College Hill, Armagh, BT61 9DG, Northern Ireland, UK
4Deutsches SOFIA Institut, Universitätsstuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany
5SUPA, University of St Andrews, School of Physics & Astronomy, North Haugh, St Andrews, KY16 9SS, UK
6National Space Institute, Technical University of Denmark, Juliane Maries Vej 30, Copenhagen Ø, 2100, Denmark
7Astronomisches Rechen-Institut, Zentrum für Astronomie, Universität Heidelberg, Mönchhofstrasse 12-14, 69120 Heidelberg, Germany
8Institut d’Astrophysique et de Géophysique, Université de Liège, 4000 Liège, Belgium
9Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, Copenhagen Ø, 2100, Denmark
10INAF, Osservatorio Astronomico di Brera, 23807 Merate, Italy
11Dipartimento di Fisica “E. R. Caianiello”, Università di Salerno, Baronissi, Italy
12INAF, Osservatorio Astronomico di Brera, 23807 Merate, Italy
13Bellatrix Observatory, Centre for Backyard Astrophysics, Ceccano (FR), Italy
14Department of Physics, Sharif University of Technology, Tehran, Iran
15European Southern Observatory, Casilla 19001, Santiago 19, Chile

30 June 2009

APPENDIX A: RESULTS OF THE LIGHT CURVE ANALYSES

The tables in this section contain the full results of modelling light curve of WASP-4 from Wilson et al. (2008), Gillon et al. (2009), Winn et al. (2009) and from this work.

REFERENCES

This paper has been typeset from a \TeX/\LaTeX{} file prepared by the author.
Table A1. Parameters of the JKTEBOP best fits of the Euler R-band light curve of WASP-4 (Wilson et al. 2008), using different approaches to LD. For each part of the table the upper quantities are fitted parameters and the lower quantities are derived parameters. T_0 is given as HJD — 2454000.0. The light curve contains 213 datapoints.

<table>
<thead>
<tr>
<th>Linear LD law</th>
<th>Quadratic LD law</th>
<th>Square-root LD law</th>
<th>Logarithmic LD law</th>
<th>Cubic LD law</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_A + \eta$</td>
</tr>
<tr>
<td>k</td>
<td>k</td>
<td>k</td>
<td>k</td>
<td>k</td>
</tr>
<tr>
<td>i (deg.)</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>u_A</td>
<td>u_A</td>
<td>u_A</td>
<td>u_A</td>
<td>u_A</td>
</tr>
<tr>
<td>v_A</td>
<td>v_A</td>
<td>v_A</td>
<td>v_A</td>
<td>v_A</td>
</tr>
<tr>
<td>T_0</td>
<td>T_0</td>
<td>T_0</td>
<td>T_0</td>
<td>T_0</td>
</tr>
</tbody>
</table>

Fitting for the linear LD coefficient and fixing the nonlinear LD coefficient

$r_A + \eta$	$r_A + \eta$	$r_A + \eta$	$r_A + \eta$	$r_A + \eta$
k	k	k	k	k
i (deg.)	i	i	i	i
u_A	u_A	u_A	u_A	u_A
v_A	v_A	v_A	v_A	v_A
T_0	T_0	T_0	T_0	T_0

Fitting for the linear LD coefficient and perturbing the nonlinear LD coefficient

$r_A + \eta$	$r_A + \eta$	$r_A + \eta$	$r_A + \eta$	$r_A + \eta$
k	k	k	k	k
i (deg.)	i	i	i	i
u_A	u_A	u_A	u_A	u_A
v_A	v_A	v_A	v_A	v_A
T_0	T_0	T_0	T_0	T_0

Fitting for both LD coefficients

$r_A + \eta$	$r_A + \eta$	$r_A + \eta$	$r_A + \eta$	$r_A + \eta$
k	k	k	k	k
i (deg.)	i	i	i	i
u_A	u_A	u_A	u_A	u_A
v_A	v_A	v_A	v_A	v_A
T_0	T_0	T_0	T_0	T_0
Table A2. Parameters of the JKTEBOP best fits of the z-band VLT light curve of WASP-4 (Gillon et al. 2009), using different approaches to LD. For each part of the table the upper quantities are fitted parameters and the lower quantities are derived parameters. T_0 is given as HJD − 2454000.0. The light curves contain 244 datapoints.

<table>
<thead>
<tr>
<th>Linear LD law</th>
<th>Quadratic LD law</th>
<th>Square-root LD law</th>
<th>Logarithmic LD law</th>
<th>Cubic LD law</th>
</tr>
</thead>
<tbody>
<tr>
<td>All LD coefficients fixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r_A + r_b$</td>
<td>0.2085±0.0017</td>
<td>0.2099±0.0015</td>
<td>0.2094±0.0016</td>
<td>0.2094±0.0015</td>
</tr>
<tr>
<td>k</td>
<td>0.15167±0.0023</td>
<td>0.15304±0.0025</td>
<td>0.15313±0.0026</td>
<td>0.15308±0.0025</td>
</tr>
<tr>
<td>i (deg.)</td>
<td>89.91±0.05</td>
<td>88.56±0.47</td>
<td>88.61±0.51</td>
<td>88.64±0.53</td>
</tr>
<tr>
<td>u_A</td>
<td>0.50 fixed</td>
<td>0.25 fixed</td>
<td>0.10 fixed</td>
<td>0.59 fixed</td>
</tr>
<tr>
<td>v_A</td>
<td>0.51 fixed</td>
<td>0.54 fixed</td>
<td>0.26 fixed</td>
<td>0.10 fixed</td>
</tr>
<tr>
<td>T_0</td>
<td>396.695401±0.000037</td>
<td>396.695394±0.000035</td>
<td>396.695394±0.000036</td>
<td>396.695393±0.000036</td>
</tr>
</tbody>
</table>

| **Fitting for the linear LD coefficient and fixing the nonlinear LD coefficient** |
$r_A + r_b$	0.2086±0.0017	0.2086±0.0017	0.2099±0.0015	0.2094±0.0015	0.2090±0.0016
k	0.15442±0.0049	0.15244±0.0044	0.15351±0.0042	0.15300±0.0042	0.15378±0.0043
i (deg.)	89.42±0.48	88.33±0.63	88.66±0.95	88.25±0.68	
u_A	0.392±0.010	0.270±0.013	0.086±0.011	0.590±0.012	0.375±0.012
v_A	0.31 fixed	0.54 fixed	0.26 fixed	0.10 fixed	
T_0	396.695394±0.000034	396.695393±0.000035	396.695393±0.000038	396.695393±0.000034	396.695393±0.000035

| **Fitting for the linear LD coefficient and perturbing the nonlinear LD coefficient** |
$r_A + r_b$	0.2086±0.0017	0.2086±0.0017	0.2099±0.0015	0.2094±0.0015	0.2090±0.0016
k	0.15244±0.0055	0.15351±0.0045	0.15300±0.0042	0.15300±0.0042	0.15378±0.0043
i (deg.)	89.42±0.71	88.33±0.65	88.66±1.02	88.25±0.68	
u_A	0.270±0.029	0.086±0.038	0.590±0.031	0.375±0.016	
v_A	0.54 perturbed	0.54 perturbed	0.26 perturbed	0.10 perturbed	
T_0	396.695393±0.000037	396.695393±0.000037	396.695393±0.000038	396.695393±0.000034	396.695393±0.000037

| **Fitting for both LD coefficients** |
$r_A + r_b$	0.2100±0.0017	0.2101±0.0016	0.2101±0.0016	0.2101±0.0017	0.2101±0.0017
k	0.15412±0.0067	0.15412±0.0080	0.15414±0.0078	0.15414±0.0076	0.15417±0.0087
i (deg.)	88.12±0.31	88.09±0.76	88.11±0.69	88.08±0.48	
u_A	0.371±0.039	0.290±0.250	0.433±0.097	0.385±0.023	
v_A	0.050±0.00034	0.179±0.042	0.059±0.123	0.039±0.115	
T_0	396.695393±0.000034	396.695393±0.000033	396.695393±0.000033	396.695393±0.000034	396.695393±0.000036

r_A	0.1817±0.0014	0.1820±0.0013	0.1820±0.0013	0.1816±0.0014	0.1819±0.0014
r_b	0.02804±0.00032	0.02805±0.00031	0.02800±0.00031	0.02800±0.00032	0.02800±0.00033
σ (mmag)	0.6042	0.6044	0.6044	0.6044	
X_{red}	1.6586	1.6596	1.6592	1.6595	
Table A3. Parameters of the JKTEBOP best fits of the Magellan z-band telescope light curve of WASP-4 (Winn et al. 2009), using different approaches to LD. For each part of the table the upper quantities are fitted parameters and the lower quantities are derived parameters. T$_0$ is given as HDJ – 2454000.0. The light curves contain 713 datapoints.

<table>
<thead>
<tr>
<th>Linear LD law</th>
<th>Quadratic LD law</th>
<th>Square-root LD law</th>
<th>Logarithmic LD law</th>
<th>Cubic LD law</th>
</tr>
</thead>
<tbody>
<tr>
<td>All LD coefficients fixed</td>
</tr>
<tr>
<td>$r_A + r_h$</td>
<td>0.2103 + 0.0014</td>
<td>0.2126 + 0.0014</td>
<td>0.2123 + 0.0015</td>
<td>0.212 + 0.0014</td>
</tr>
<tr>
<td>k</td>
<td>0.1529 + 0.0028</td>
<td>0.15405 + 0.0026</td>
<td>0.15428 + 0.0025</td>
<td>0.15419 + 0.0026</td>
</tr>
<tr>
<td>i (deg.)</td>
<td>89.63 + 0.79</td>
<td>88.26 + 0.37</td>
<td>88.25 + 0.40</td>
<td>88.24 + 0.37</td>
</tr>
<tr>
<td>a_A</td>
<td>0.50 fixed</td>
<td>0.25 fixed</td>
<td>0.10 fixed</td>
<td>0.59 fixed</td>
</tr>
<tr>
<td>v_A</td>
<td>0.31 fixed</td>
<td>0.54 fixed</td>
<td>0.26 fixed</td>
<td>0.10 fixed</td>
</tr>
<tr>
<td>T_0</td>
<td>697.797573 ± 0.000032</td>
<td>697.797565 ± 0.000034</td>
<td>697.797567 ± 0.000032</td>
<td>697.797566 ± 0.000033</td>
</tr>
<tr>
<td>Fitting for the linear LD coefficient and fixing the nonlinear LD coefficient</td>
<td>Fitting for the linear LD coefficient and fixing the nonlinear LD coefficient</td>
<td>Fitting for the linear LD coefficient and fixing the nonlinear LD coefficient</td>
<td>Fitting for the linear LD coefficient and fixing the nonlinear LD coefficient</td>
<td>Fitting for the linear LD coefficient and fixing the nonlinear LD coefficient</td>
</tr>
<tr>
<td>$r_A + r_h$</td>
<td>0.2123 + 0.0016</td>
<td>0.2122 + 0.0016</td>
<td>0.2123 + 0.0016</td>
<td>0.2119 + 0.0016</td>
</tr>
<tr>
<td>k</td>
<td>0.15506 + 0.0044</td>
<td>0.15356 + 0.0044</td>
<td>0.15424 + 0.0044</td>
<td>0.15386 + 0.0044</td>
</tr>
<tr>
<td>i (deg.)</td>
<td>88.00 ± 0.44</td>
<td>88.98 ± 0.44</td>
<td>88.27 ± 0.44</td>
<td>88.51 ± 0.44</td>
</tr>
<tr>
<td>a_A</td>
<td>0.412 ± 0.12</td>
<td>0.276 ± 0.14</td>
<td>0.102 ± 0.13</td>
<td>0.601 ± 0.13</td>
</tr>
<tr>
<td>v_A</td>
<td>0.31 fixed</td>
<td>0.54 fixed</td>
<td>0.26 fixed</td>
<td>0.10 fixed</td>
</tr>
<tr>
<td>T_0</td>
<td>697.797565 ± 0.000032</td>
<td>697.797565 ± 0.000032</td>
<td>697.797567 ± 0.000032</td>
<td>697.797567 ± 0.000033</td>
</tr>
<tr>
<td>Fitting for the linear LD coefficient and perturbing the nonlinear LD coefficient</td>
<td>Fitting for the linear LD coefficient and perturbing the nonlinear LD coefficient</td>
<td>Fitting for the linear LD coefficient and perturbing the nonlinear LD coefficient</td>
<td>Fitting for the linear LD coefficient and perturbing the nonlinear LD coefficient</td>
<td>Fitting for the linear LD coefficient and perturbing the nonlinear LD coefficient</td>
</tr>
<tr>
<td>$r_A + r_h$</td>
<td>0.1838 ± 0.0012</td>
<td>0.1831 ± 0.0013</td>
<td>0.1838 ± 0.0013</td>
<td>0.1836 ± 0.0013</td>
</tr>
<tr>
<td>r_b</td>
<td>0.02849 ± 0.0025</td>
<td>0.02808 ± 0.0027</td>
<td>0.02836 ± 0.0027</td>
<td>0.02824 ± 0.0027</td>
</tr>
<tr>
<td>σ (mmag)</td>
<td>0.639</td>
<td>0.6014</td>
<td>0.6099</td>
<td>0.6018</td>
</tr>
<tr>
<td>χ^2_{red}</td>
<td>0.7014</td>
<td>0.6961</td>
<td>0.6954</td>
<td>0.6943</td>
</tr>
<tr>
<td>Fitting for both LD coefficients</td>
</tr>
<tr>
<td>$r_A + r_h$</td>
<td>0.2112 ± 0.0016</td>
<td>0.2122 ± 0.0016</td>
<td>0.2122 ± 0.0016</td>
<td>0.2119 ± 0.0016</td>
</tr>
<tr>
<td>k</td>
<td>0.15336 + 0.0049</td>
<td>0.15536 + 0.0049</td>
<td>0.15424 + 0.0049</td>
<td>0.15386 + 0.0049</td>
</tr>
<tr>
<td>i (deg.)</td>
<td>88.98 ± 0.91</td>
<td>88.27 ± 0.91</td>
<td>88.51 ± 0.91</td>
<td>88.18 ± 0.91</td>
</tr>
<tr>
<td>a_A</td>
<td>0.276 ± 0.029</td>
<td>0.102 ± 0.029</td>
<td>0.601 ± 0.029</td>
<td>0.391 ± 0.029</td>
</tr>
<tr>
<td>v_A</td>
<td>0.31 perturbed</td>
<td>0.54 perturbed</td>
<td>0.26 perturbed</td>
<td>0.10 perturbed</td>
</tr>
<tr>
<td>T_0</td>
<td>697.797565 ± 0.000033</td>
<td>697.797565 ± 0.000033</td>
<td>697.797567 ± 0.000033</td>
<td>697.797567 ± 0.000033</td>
</tr>
</tbody>
</table>

\[\chi^2_{red} = \frac{\sum (y - \hat{y})^2}{n-p} \]

\[n = 713, \quad p = 5\]
Table A4. Parameters of the JKT photoprobe best fits of the Danish telescope R-band light curve of WASP-4 (this work), using different approaches to LD. For each part of the table the upper quantities are fitted parameters and the lower quantities are derived parameters. T_0 is given as $\text{HJD} - 2454000.0$. The light curves contain 452 datapoints.

<table>
<thead>
<tr>
<th>Linear LD law</th>
<th>Quadratic LD law</th>
<th>Square-root LD law</th>
<th>Logarithmic LD law</th>
<th>Cubic LD law</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_A + r_b$</td>
<td>$0.2097^{+0.0018}_{-0.0016}$</td>
<td>$2.097^{+0.0020}_{-0.0016}$</td>
<td>$2.099^{+0.0021}_{-0.0017}$</td>
<td>$2.092^{+0.0020}_{-0.0017}$</td>
</tr>
<tr>
<td>k</td>
<td>$0.1534^{+0.0045}_{-0.0029}$</td>
<td>$0.1534^{+0.0045}_{-0.0023}$</td>
<td>$0.1532^{+0.0040}_{-0.0025}$</td>
<td>$0.1531^{+0.0041}_{-0.0026}$</td>
</tr>
<tr>
<td>i (deg.)</td>
<td>$89.86^{+1.04}_{-0.98}$</td>
<td>$89.86^{+1.04}_{-0.98}$</td>
<td>$89.97^{+1.04}_{-0.98}$</td>
<td>$89.97^{+1.04}_{-0.98}$</td>
</tr>
<tr>
<td>u_A</td>
<td>0.60 fixed</td>
<td>0.40 fixed</td>
<td>0.25 fixed</td>
<td>0.70 fixed</td>
</tr>
<tr>
<td>v_A</td>
<td>0.25 fixed</td>
<td>0.50 fixed</td>
<td>0.23 fixed</td>
<td>0.50 fixed</td>
</tr>
<tr>
<td>T_0</td>
<td>$365.916894_4^{+0.000047}_{-0.000048}$</td>
<td>$365.916893_4^{+0.000047}_{-0.000048}$</td>
<td>$365.916894_4^{+0.000047}_{-0.000048}$</td>
<td>$365.916894_4^{+0.000043}_{-0.000046}$</td>
</tr>
</tbody>
</table>

Fitting for the linear LD coefficient and fixing the nonlinear LD coefficient

$r_A + r_b$	$0.2085^{+0.0019}_{-0.0015}$	$2.099^{+0.0020}_{-0.0016}$	$2.099^{+0.0020}_{-0.0017}$	$2.088^{+0.0019}_{-0.0017}$
k	$0.1547^{+0.0046}_{-0.0031}$	$0.1534^{+0.0045}_{-0.0031}$	$0.1536^{+0.0045}_{-0.0031}$	$0.1540^{+0.0048}_{-0.0038}$
i (deg.)	$89.30^{+0.76}_{-0.81}$	$89.60^{+0.72}_{-0.72}$	$89.50^{+0.72}_{-0.72}$	$90.00^{+0.76}_{-0.81}$
u_A	$0.501^{+0.013}_{-0.013}$	$0.401^{+0.017}_{-0.017}$	$0.220^{+0.017}_{-0.018}$	$0.675^{+0.014}_{-0.015}$
v_A	0.25 fixed	0.50 fixed	0.23 fixed	0.10 fixed
T_0	$365.916894_4^{+0.000039}_{-0.000047}$	$365.916893_4^{+0.000045}_{-0.000044}$	$365.916894_4^{+0.000044}_{-0.000046}$	$365.916894_4^{+0.000047}_{-0.000043}$

Fitting for the linear LD coefficient and perturbing the nonlinear LD coefficient

$r_A + r_b$	$0.1806^{+0.0015}_{-0.0013}$	$0.1819^{+0.0016}_{-0.0016}$	$0.1814^{+0.0016}_{-0.0016}$	$0.1809^{+0.0015}_{-0.0016}$
k	$0.0279^{+0.0003}_{-0.0003}$	$0.0279^{+0.0004}_{-0.0004}$	$0.0279^{+0.0004}_{-0.0004}$	$0.0279^{+0.0004}_{-0.0004}$
i (deg.)	$89.50^{+0.76}_{-0.76}$	$89.60^{+0.76}_{-0.76}$	$89.50^{+0.76}_{-0.76}$	$90.00^{+0.76}_{-0.76}$
u_A	$0.401^{+0.013}_{-0.013}$	$0.401^{+0.017}_{-0.017}$	$0.220^{+0.017}_{-0.018}$	$0.675^{+0.014}_{-0.015}$
v_A	0.25 perturbed	0.50 perturbed	0.23 perturbed	0.10 perturbed
T_0	$365.916894_4^{+0.000045}_{-0.000046}$	$365.916894_4^{+0.000046}_{-0.000046}$	$365.916894_4^{+0.000046}_{-0.000046}$	$365.916894_4^{+0.000045}_{-0.000045}$

Fitting for both LD coefficients

$r_A + r_b$	$0.2088^{+0.0023}_{-0.0019}$	$0.2093^{+0.0019}_{-0.0016}$	$0.2094^{+0.0020}_{-0.0017}$	$0.2093^{+0.0022}_{-0.0017}$
k	$0.1542^{+0.0053}_{-0.0031}$	$0.1549^{+0.0047}_{-0.0031}$	$0.1542^{+0.0047}_{-0.0031}$	$0.1542^{+0.0053}_{-0.0031}$
i (deg.)	$90.00^{+1.34}_{-1.34}$	$89.59^{+1.13}_{-1.13}$	$89.59^{+1.13}_{-1.13}$	$89.36^{+1.19}_{-1.19}$
u_A	$0.476^{+0.042}_{-0.042}$	$0.276^{+0.058}_{-0.058}$	$0.276^{+0.058}_{-0.058}$	$0.493^{+0.069}_{-0.069}$
v_A	$0.881^{+0.015}_{-0.015}$	$0.412^{+0.029}_{-0.029}$	$0.114^{+0.014}_{-0.014}$	$0.983^{+0.018}_{-0.018}$
T_0	$365.916885_5^{+0.000052}_{-0.000047}$	$365.916885_5^{+0.000052}_{-0.000047}$	$365.916885_5^{+0.000052}_{-0.000047}$	$365.916884_5^{+0.000053}_{-0.000048}$

© 0000 RAS, MNRRAS 000, 000-000