

Overview

- We explore the Magellanic Stream (MS) using the Leiden-Argentine-Bonn (LAB) HI all-sky survey [5].
- Using a Gaussian decomposition of the LAB HI velocity profiles, we trace the MS back to its origin in the LMC.
- We use the higher-resolution Parkes HI survey of the LMC [11] to investigate the formation mechanism of the MS and find evidence for gas blowout.

Historical Perspective

- Previously thought the MS originates from SMC/Bridge [3,10].
- Formed by tidal forces or ram pressure [3,4,8].
- Problems with these formation mechanisms: If tidal forces: Why no stars in the Stream? If ram pressure: Why is there a Leading Arm? First Passage Scenario challenges both mechanisms [1].

Tracing the MS to the LMC

- The two MS filaments previously identified spatially [10] are seen wellseparated in velocity for the first time.
- In the position-velocity diagram, one of the filaments can be traced back to the LMC.
- A position-velocity cut is used to isolate the LMC-originating filament and reveal its full spatial distribution.
- This filament originates SouthEast HI Overdensity (SEHO) region of the LMC.

· The sinusoidal pattern in position and velocity of the LMC filament can be used to estimate the MS drift rate and age (assuming pattern arises from LMC rotation).

> MS drift rate ~ 49 km/s MS age ~ 1.7 Gyr

The Formation of the MS: **Evidence for Blowout**

- \bullet We use the high-resolution Parkes HI survey of the LMC [11] to investigate the formation of the MS in the SEHO region.
- The SEHO region is a natural place for an HI stream to originate: high density of HI [7], position at end of the stellar LMC bar, leading edge of LMC motion, rich in CO [12], $H\alpha$ emission [6], GMCs [12], young stellar clusters [2], and supergiant shells [6].
- The Parkes HI survey shows evidence that gas is being blown out of the SEHO region to high velocity by supergiant shells (SGS 19 & 20 [6]). This high-velocity gas connects to the LMC filament and the Leading Arm [9].

200

The Blowout Model

- New formation mechanism for the Magellanic Stream:
 - 1. Star formation in SEHO creates superbubbles/supergiant shells.
 - 2. Supergiant shells blowout SEHO gas with LMC escape velocity.
 - 3. Once gas is far enough away from LMC, tidal forces and ram pressure pull/push the gas to form the MS and Leading Arm.
- Tidal/ram pressure forces do not strip the gas, but shape the gas into a
- Explains why there are no stars in the
- Explains the existence of both trailing and leading arms.
- Consistent with hyperbolic predicted by First Passage Model.

Comparison of MS Formation Mechanism

	Tidal	Ram Pressure	Blowout
LMC origin	×	V	V
Leading Arm	V	×	V
N(HI) gradient	×	V	V
Bifurcation	V?	×	V?
No Stars	×	V	V
First Passage	* ?	* ?	V?

References

- References

 1. Besla et al. 2007, ApJ, 668, 949

 2. Bica et al. 1999, AJ, 117, 238

 3. Connors et al. 2006, MNRAS, 371, 108

 4. Gardiner & Noguchi 1996, MNRAS, 278, 191

 5. Kalberla et al. 2005, A&A, 440, 481

 6. Kim et al. 1999, AJ, 118, 2797

 7. Kim et al. 2003, ApJS, 148, 473

 8. Mastropietro et al. 2005, MNRAS, 363, 509

 9. Nidever, Majewski & Butler Burton 2008, ApJ, 679, 432

 10. Putman et al. 2003, ApJ, 586, 170

 11. Staveley-Smith et al. 2003, MNRAS, 339, 87

 12. Yamaguchi et al. 2001, PASJ, 53, 985