

1. Who?	1
2. Why?	2
3. How?	3 4
4. Where?	5 6
5. What?	7 8 9 10

The Intra-Cluster Medium of Globulars

Iain McDonald, Keele University
NAM 2007

- 1. Who? 1
- 2. Why? 2
- 3. How? 3 4
- 4. Where? 5 6
- 5. What? 7 8 9 10

Who?

Our collaboration

University of Keele

Iain McDonald

Jacco van Loon

Nye Evans

University of Harvard

Andrea Dupree

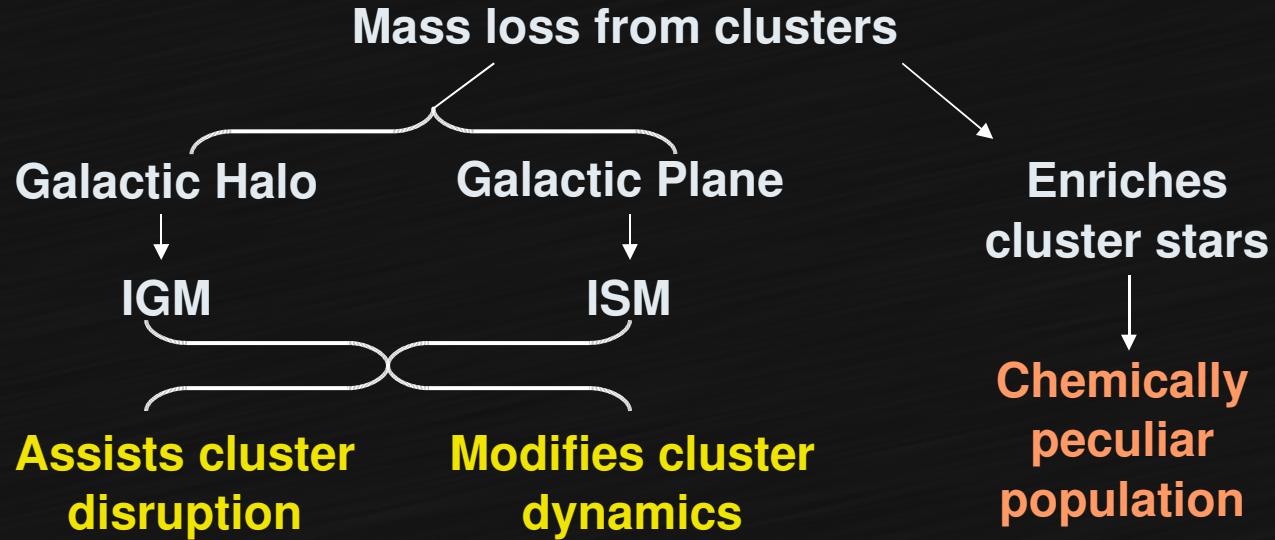
University of Minnesota

Martha Boyer

Chick Woodward

Elisha Polomski

Bob Gehrz



Andrew Helton

1. Who?	1
2. Why?	2
3. How?	3 4
4. Where?	5 6
5. What?	7 8 9 10

Why?

Why study mass loss?

→ Implications for dSph galaxies.

- Mass loss mainly from giant branch stars.

- Total cluster output $\sim 1 M_{\odot}$ / Myr.

- Clusters cross the galactic plane every ~ 100 Myr.

→ $\sim 100 M_{\odot}$ of intra-cluster medium (ICM) expected in the most massive clusters.

1. Who?	1
2. Why?	2
3. How?	3 4
4. Where?	5 6
5. What?	7 8 9 10

How?

How are we searching for the ICM?

- Several different methods exist to detect the ICM.
- These include:

Molecules

Rotational line emission

Molecular Gas

H_I (21cm) emission

Dust

Continuum emission

Optical reddening

Atomic Gas

Diffuse H-alpha emission

Dispersion Measures

Diffuse X-ray emission

- Our team has used the Spitzer Space Telescope to search for continuum emission from intra-cluster dust.

1. Who?	1
2. Why?	2
3. How?	3 4
4. Where?	5 6
5. What?	7 8 9 10

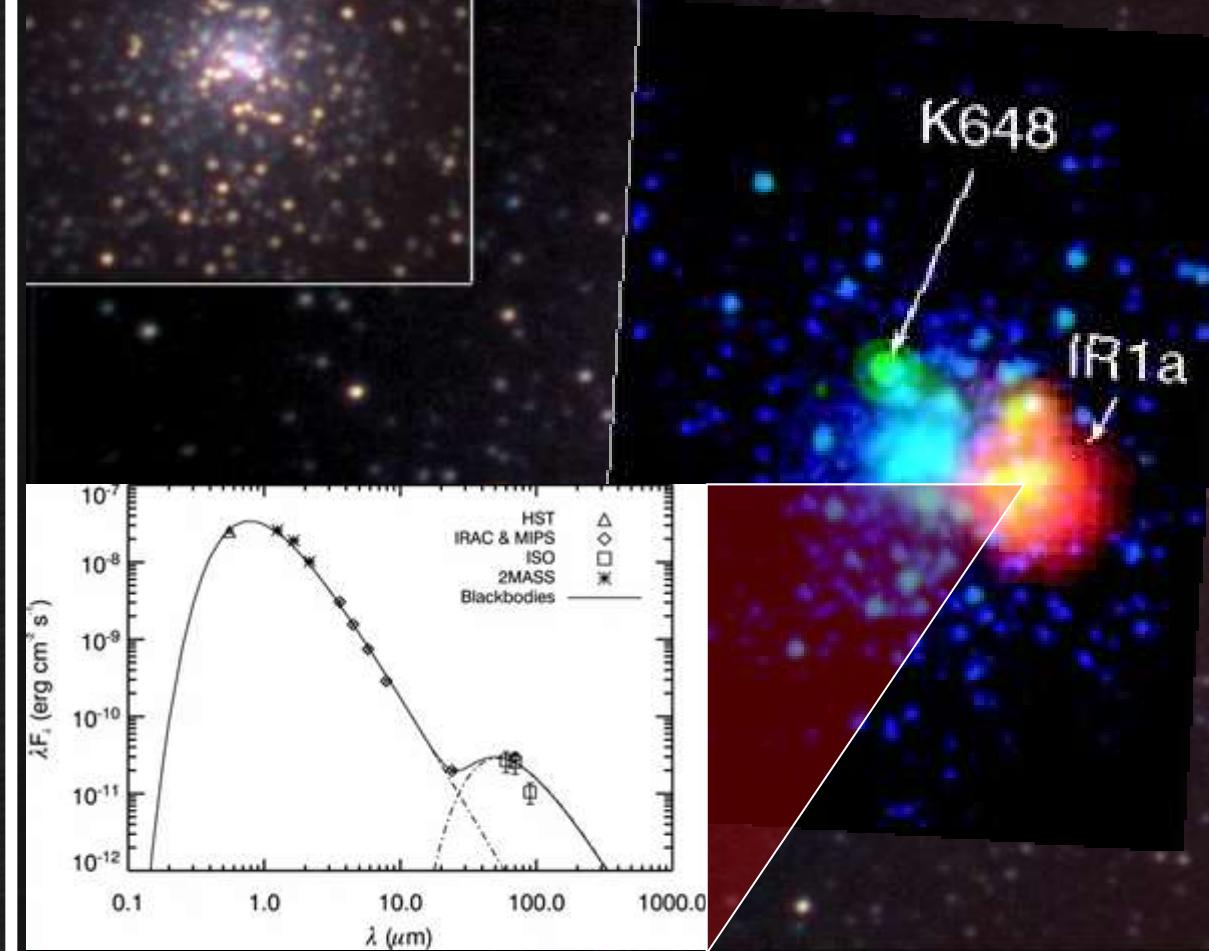
How?

How are we searching for the ICM?

- The significant “detections” of ICM are shown below:

Team	Cluster	Instrument	Type	Mass found (M_{\odot})	Implied Total Mass (M_{\odot}) [*]
Boyer et al.	M15	Spitzer	Dust	9×10^{-4}	~33
Evans et al.	M15	ISOPHOT	Dust	5×10^{-4}	~18
van Loon et al.	M15	Arecibo	H I	~ 0.3	~ 0.3
Freire et al.	47 Tuc	PSR DMs	H ⁺	~ 0.2	> 0.2
Faulkner et al.	NGC 2808	Parkes	H I	≤ 200	≤ 200

* Using dust/gas = 200 * (Z / 0.019), totals for H⁺/H I detections depend on ionisation of hydrogen.
Other detections yield only upper limits, not all clusters surveyed.


- So many clusters... so little ICM.
- Where has all the ICM gone?
→ Some clearing mechanism is continually removing it.

- 1. Who? 1
- 2. Why? 2
- 3. How? 3 4
- 4. Where? 5 6
- 5. What? 7 8 9 10

Where?

M15

Confirmed detection of 0.001 solar masses at 70 K!

- 1. Who? 1
- 2. Why? 2
- 3. How? 3 4
- 4. Where?** 5 **6**
- 5. What? 7 8 9 10

Where?

Omega Centauri

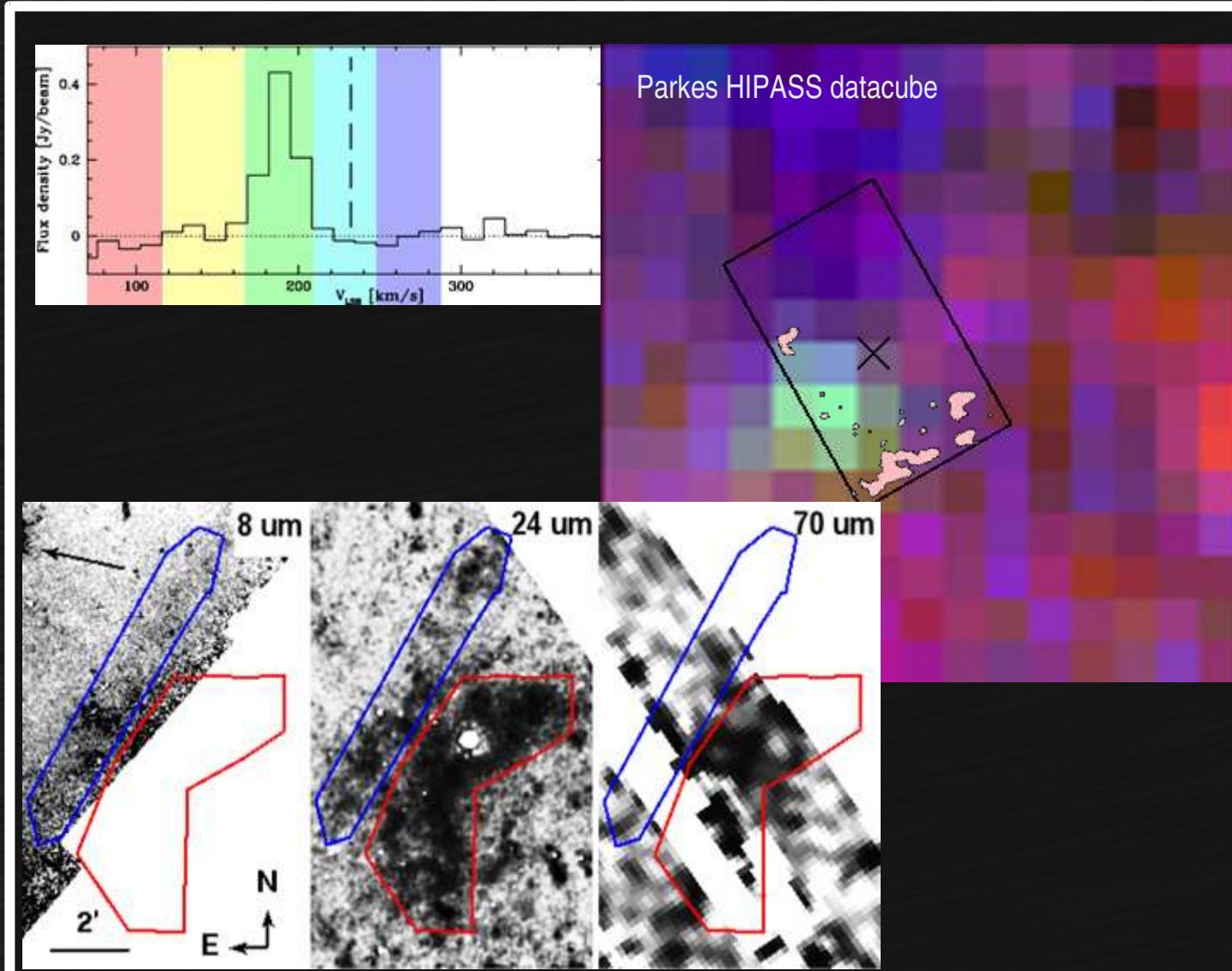


Image: Spitzer MIPS 24μm

- 1. Who? 1
- 2. Why? 2
- 3. How? 3 4
- 4. Where? 5 6
- 5. What? 7 8 9 10

What?

What's going on?

1. Who?	1
2. Why?	2
3. How?	3 4
4. Where?	5 6
5. What?	7 8 9 10

What?

What's going on?

What's happening in ω Centauri?

- Extended 24 μ m emission near ω Centauri.
- Emission appears curved, centred on the cluster.
- Close to an isolated, compact H I source near cluster's v_{rad} .

➔ It may be ICM being expelled from the cluster.

- We have secured ATCA time to observe the cloud in H I.
- This should allow us to spatially resolve the H I source.

1. Who?	1
2. Why?	2
3. How?	3 4
4. Where?	5 6
5. What?	7 8 9 10

What?

What's going on?

Why don't we see it ICM in all globular clusters?

- We don't know!
- M15 is extremely metal poor and dense.
- ω Cen is the most massive globular cluster.
 - ➔ Metallicity and/or cluster escape velocity may play a dominant role in mass retention.
- Alternatively, mass loss within clusters may be episodic.
 - ➔ We only see ICM in clusters during times of high mass loss.
- This could be associated with the disruption of a planetary nebula, or represent a superwind phase of an AGB star.

1. Who?	1
2. Why?	2
3. How?	3 4
4. Where?	5 6
5. What?	7 8 9 10

What? Conclusions

- Following a detection of intra-cluster dust in M15, we may have found extended dust emission from ω Centauri.
- It may be associated with a hydrogen cloud at roughly the right radial velocity.
- If this is true, it may mean that mass loss from clusters does not occur at a constant rate, but is highly episodic.
- Gas appears to be removed continuously, probably by ram pressure from the halo gas

→ Removal of ICM is important for the disruption of clusters.