High-precision multiband time series photometry of exoplanets Qatar-1b and TrES-5b

D. Mislis,1 L. Mancini,2 J. Tregloan-Reed,3 S. Ciceri,2 J. Southworth,4 G. D’Ago,5 I. Bruni,6 Ö. Baştürk,7 K. A. Alsubai,1 E. Bachelet,1 D. M. Bramich,1 Th. Henning,2 T. C. Hinse,8 A. L. Iannella,5 N. Parley1 and T. Schroeder2

1Qatar Environment and Energy Research Institute, Qatar Foundation, Tornado Tower, Floor 19, PO Box 5825, Doha, Qatar
2Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
3NASA Ames Research Center, Moffett Field, CA 94035, USA
4Astrophysics Group, Keele University, Staffordshire ST5 5BG, UK
5Department of Physics, University of Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
6INAF – Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy
7Department of Astronomy and Space Sciences, Faculty of Science, Ankara University, Tandoğan, TR-06100 Ankara, Turkey
8Korea Astronomy and Space Science Institute, 776 Daedukdae-ro, Yuseong-gu, Daejeon 305-348, Republic of Korea

Accepted 2015 January 27. Received 2015 January 27; in original form 2014 October 21

ABSTRACT
We present an analysis of the Qatar-1 and TrES-5 transiting exoplanetary systems, which contain Jupiter-like planets on short-period orbits around K-dwarf stars. Our data comprise a total of 20 transit light curves obtained using five medium-class telescopes, operated using the defocusing technique. The average precision we reach in all our data is \(\text{RMS}_Q = 1.1 \) mmag for Qatar-1 (\(V = 12.8 \)) and \(\text{RMS}_T = 1.0 \) mmag for TrES-5 (\(V = 13.7 \)). We use these data to refine the orbital ephemeris, photometric parameters, and measured physical properties of the two systems. One transit event for each object was observed simultaneously in three passbands (\(gri \)) using the BUSCA imager. The QES survey light curve of Qatar-1 has a clear sinusoidal variation on a period of \(P_\star = 23.697 + 0.123 \) d, implying significant star-spot activity. We searched for star-spot crossing events in our light curves, but did not find clear evidence in any of the new data sets. The planet in the Qatar-1 system did not transit the active latitudes on the surfaces of its host star. Under the assumption that \(P_\star \) corresponds to the rotation period of Qatar-1A, the rotational velocity of this star is very close to the \(v\sin i \) value found from observations of the Rossiter–McLaughlin effect. The low projected orbital obliquity found in this system thus implies a low absolute orbital obliquity, which is also a necessary condition for the transit chord of the planet to avoid active latitudes on the stellar surface.

Key words: techniques: photometric – planets and satellites: detection – planets and satellites: fundamental parameters – planetary systems.

1 INTRODUCTION
Ground-based photometric surveys have found a large number of transiting planets, possessing a huge diversity in their physical and orbital properties. The precise characterization of these objects is a challenge as it requires high-quality data, both photometric and spectroscopic. The main limitation to our understanding of most transiting planets is due to the quality of the transit light curve, which is critical in determining the properties of both the planets and their host stars (Southworth 2008, 2009).

In this work, we present follow-up photometry of two transiting planets orbiting cool stars – Qatar-1b and TrES-5b – aimed at not only improving measurements of their physical properties but also investigating the spot activity of their host stars. Our new data allow a significant improvement in our understanding of both systems and, in the case of TrES-5, form the basis of the first study of the system since the discovery paper.

Qatar-1b was discovered by Alsubai et al. (2011), and was the first planet found by the Qatar Exoplanet Survey (QES), an exoplanet transit survey focused on hot Jupiters and hot Neptunes via the transit method (Alsubai et al. 2011). The transiting planet TrES-5b was discovered shortly afterwards (Mandushev et al. 2011) using observations by the TrES survey (Alonso et al. 2004). The Qatar-1

* E-mail: dmislis@qf.org.qa

© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
and TrES-5 systems are notably similar in terms of orbital period (1.4–1.5 d), host star effective temperature (4800–5200 K) and metallicity ([Fe/H] = 0.20), and the planetary radius (~1.2 R_{\text{Jupiter}}) and equilibrium temperature (1400–1500 K). Qatar-1 has subsequently been studied by Covino et al. (2013), who found a sky-projected orbital obliquity consistent with axial alignment, and by von Essen et al. (2013), who found indications of transit timing variations (TTVs) in this system. No studies of TrES-5 have been published since its discovery paper (Mandushev et al. 2011). The wavelength dependence than achievable via the Rossiter–McLaughlin effect (Tregloan-Reed, Southworth & Tappert 2013). The wavelength dependence of the amplitude of the unocculted star-spots can mimic changes in flux during transit, which can be modelled to obtain the spot size, position, and temperature (e.g. Mancini et al. 2014). Multiple observations of the same spot during different transits can yield the orbital obliquity of the system (Nutzman, Fabrycky & Fortney 2011; Sanchis-Ojeda et al. 2011) to a significantly higher precision than achievable via the Rossiter–McLaughlin effect (Tregloan-Reed, Southworth & Tappert 2013). The wavelength dependence of the amplitude of the unocculted star-spots can mimic changes in the apparent radius of transiting planets as a function of wavelength (Pont et al. 2013; Oshagh et al. 2014).

In this work, we present high-precision photometric observations of Qatar-1 and TrES-5, and use them to get more accurate measurements of the physical parameters of the systems. Some of our data were obtained in multiple passbands simultaneously, but we find no evidence for spot crossings in these data. We do, however, find strong evidence that the Qatar-1A is a spotted star from the long-term light curve of the system.

2 OBSERVATIONS AND DATA REDUCTION

Our observations were obtained using five medium-size telescopes equipped with imaging instruments, and operated out of focus (see Southworth et al. 2009). A summary of the observations is given in Table 1. The data were reduced using the DEFOT pipeline from Southworth et al. (2009, 2014). This pipeline was used to debias and flat-field the data, then perform aperture photometry on the target and all possible comparison stars. The radii of the software apertures (target, inner sky, outer sky) for each data set were chosen to give the lowest scatter in the final light curve. The final light curve was constructed by calculating differential magnitudes versus a weighted set of comparison stars. The weights were optimized simultaneously with the coefficients of a low-order polynomial of magnitude versus time, in order to rectify the light curve to zero differential magnitude and minimize the scatter of the data obtained outside transit.

The data were reduced using the method and the DEFOT pipeline from Southworth et al. (2009, 2014). A total of 11 transits were observed using the 1.23 m telescope at Centro Astronómico Hispano-Alemán (CAHA). This uses a 2048 × 2048 pixel CCD camera with a plate scale of 0.32 arcsec pixel−1 and has a 21.5 arcmin × 21.5 arcmin field of view with the default BVRi filters. 10 of the transits were obtained through a Cousins R filter and the last through a Cousins I filter. The first three transits were already presented in the study by Covino et al. (2013) but were re-reduced for the current work.

One transit each of Qatar-1 and TrES-5 was observed using the Cassini 1.52 m telescope equipped with the BUSCA instrument. This obtains CCD images of a 5.8 arcmin diameter field of view simultaneously in four optical passbands, split by dichroic elements. Each of the four CCDs has 4096 × 4096 pixels and is operated using 2 × 2 binning. For both transits we obtained useful data in 2 binning. For both transits we obtained useful data in

Table 1. Summary of observations of Qatar-1 and TrES-5.

<table>
<thead>
<tr>
<th>Telescope</th>
<th>Date</th>
<th>Start (UT)</th>
<th>End (UT)</th>
<th>Frames (No)</th>
<th>Exp (s)</th>
<th>Filter</th>
<th>Airmass</th>
<th>Moon (per cent)</th>
<th>Apertures (pixel)</th>
<th>RMS (10^{-4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qatar-1:</td>
<td>CAHA 1.23 m</td>
<td>2011.08.25</td>
<td>23:55</td>
<td>03:36</td>
<td>158</td>
<td>60</td>
<td>Cousins R</td>
<td>1.20→1.76</td>
<td>12.8</td>
<td>9.2535</td>
</tr>
<tr>
<td></td>
<td>CAHA 2.2 m</td>
<td>2011.08.25</td>
<td>23:46</td>
<td>04:39</td>
<td>115</td>
<td>60</td>
<td>Gunn g</td>
<td>1.19→2.20</td>
<td>12.8</td>
<td>16.5,649,78.3</td>
</tr>
<tr>
<td></td>
<td>CAHA 2.2 m</td>
<td>2011.08.25</td>
<td>23:46</td>
<td>04:39</td>
<td>117</td>
<td>60</td>
<td>Gunn r</td>
<td>1.19→2.20</td>
<td>12.8</td>
<td>17.36,1.70</td>
</tr>
<tr>
<td></td>
<td>CAHA 2.2 m</td>
<td>2011.08.25</td>
<td>23:46</td>
<td>04:39</td>
<td>118</td>
<td>60</td>
<td>Gunn r</td>
<td>1.19→2.20</td>
<td>12.8</td>
<td>13.2,38.9,61.9</td>
</tr>
<tr>
<td></td>
<td>CAHA 1.23 m</td>
<td>2012.09.11</td>
<td>00:27</td>
<td>03:48</td>
<td>78</td>
<td>120</td>
<td>Cousins R</td>
<td>1.36→2.20</td>
<td>27.1</td>
<td>19.3,9,5.3</td>
</tr>
<tr>
<td></td>
<td>CAHA 1.23 m</td>
<td>2013.06.14</td>
<td>20:48</td>
<td>00:30</td>
<td>95</td>
<td>120</td>
<td>Cousins R</td>
<td>1.73→1.19</td>
<td>19.3</td>
<td>12.2,41.50</td>
</tr>
<tr>
<td></td>
<td>CAHA 1.23 m</td>
<td>2013.07.28</td>
<td>20:17</td>
<td>01:05</td>
<td>156</td>
<td>120</td>
<td>Cousins R</td>
<td>1.31→1.16</td>
<td>59.1</td>
<td>25.8,39.61</td>
</tr>
<tr>
<td></td>
<td>CAHA 1.23 m</td>
<td>2014.04.19</td>
<td>01:40</td>
<td>04:38</td>
<td>109</td>
<td>160</td>
<td>Cousins R</td>
<td>1.61→1.17</td>
<td>80.1</td>
<td>19.29,50</td>
</tr>
<tr>
<td></td>
<td>CAHA 1.23 m</td>
<td>2013.06.04</td>
<td>20:42</td>
<td>02:57</td>
<td>138</td>
<td>150</td>
<td>Cousins R</td>
<td>1.97→1.13</td>
<td>12.9</td>
<td>20.30,50</td>
</tr>
<tr>
<td>TrES-5:</td>
<td>CAHA 1.23 m</td>
<td>2013.06.04</td>
<td>21:39</td>
<td>01:42</td>
<td>98</td>
<td>120</td>
<td>Cousins R</td>
<td>1.69→1.16</td>
<td>12.9</td>
<td>20.30,35</td>
</tr>
<tr>
<td></td>
<td>CAHA 1.23 m</td>
<td>2014.09.07</td>
<td>23:57</td>
<td>04:37</td>
<td>135</td>
<td>96–135</td>
<td>Cousins R</td>
<td>1.25→2.32</td>
<td>98.2</td>
<td>22.40,60</td>
</tr>
<tr>
<td></td>
<td>CAHA 1.23 m</td>
<td>2011.08.26</td>
<td>20:55</td>
<td>00:55</td>
<td>95</td>
<td>60</td>
<td>Gunn g</td>
<td>1.02→1.57</td>
<td>7.0</td>
<td>10.2,45,46,5.6</td>
</tr>
<tr>
<td></td>
<td>CAHA 2.2 m</td>
<td>2011.08.26</td>
<td>20:55</td>
<td>00:55</td>
<td>88</td>
<td>60</td>
<td>Gunn r</td>
<td>1.02→1.57</td>
<td>7.0</td>
<td>17.3,41.2,5.6</td>
</tr>
<tr>
<td></td>
<td>CAHA 2.2 m</td>
<td>2012.09.10</td>
<td>19:21</td>
<td>23:36</td>
<td>77</td>
<td>170</td>
<td>Cousins R</td>
<td>1.11→1.21</td>
<td>29.0</td>
<td>16.40,154.8</td>
</tr>
<tr>
<td></td>
<td>CAHA 1.23 m</td>
<td>2013.06.15</td>
<td>00:42</td>
<td>03:50</td>
<td>65</td>
<td>125</td>
<td>Cousins R</td>
<td>1.14→1.11</td>
<td>44.9</td>
<td>12.38,53</td>
</tr>
<tr>
<td></td>
<td>Cassini 1.52 m</td>
<td>2013.09.14</td>
<td>21:19</td>
<td>02:59</td>
<td>139</td>
<td>180</td>
<td>Gunn r</td>
<td>1.08→2.09</td>
<td>78.2</td>
<td>9.8,22,63.8</td>
</tr>
<tr>
<td></td>
<td>INT 2.5 m</td>
<td>2013.09.14</td>
<td>21:04</td>
<td>22:22</td>
<td>37</td>
<td>120</td>
<td>Cousins I</td>
<td>1.05→1.17</td>
<td>72.4</td>
<td>18,28,50</td>
</tr>
</tbody>
</table>
3 TRANSIT ANALYSIS

Each transit light curve was modelled with the JKTROP code to extract measurements of its photometric parameters. The object size parameters in JKTROP are the fractional radii of the star and the planet (r_A and r_b), which are the ratios between the true radii and the semimajor axis ($r_A = \frac{R_A}{a}$). The fitted parameters were the sum of the fractional radii ($r_A + r_b$), the ratio of the radii ($k = \frac{r_b}{r_A}$), the orbital inclination (i), and a reference time of mid-transit. We assumed an orbital eccentricity of zero for both objects based on previous studies (Mandushev et al. 2011; Covino et al. 2013). Limb darkening was applied using the quadratic law, with coefficients taken from Claret (2004b). We used Monte Carlo simulations to perform the error analysis for each transit fit. The errors were propagated following Alonso et al. (2008) and Mislis et al. (2010).

3.1 Qatar-1

For Qatar-1, we collected 12 light curves in total (see Fig. 1). We fit each of the data sets individually, obtaining the parameter values given in Table 2. The parameter values in Table 2 were combined into weighted means for the determination of the physical properties of the system (see below). We then fitted the T_0 values with a straight line versus cycle number to determine the orbital ephemeris. The uncertainties were obtained using 1000 Monte Carlo simulations. The resulting ephemeris is

$$T_0 = 2455799.57954(4) + 1.42002586(275) \cdot E,$$

where T_0 is the transit mid-time, E is the cycle number and the bracketed quantities give the uncertainty in the final digit of the preceding number. All times in our analysis were converted to Barycentric Julian Day (BJD/TDB).

We supplemented our T_0 values with data from the literature and searched for TTVs. We included timings from the ETD amateur data base1 with quality higher than 3. We fit a linear function to T_0 and then removed the linear trend. Fig. 2 shows the results (O − C diagram) overplotted with the best linear fit. The χ^2_{red} value is 31.4, which is very high. This implies that the O − C data cannot be explained by a simple linear fit, but still the amplitude of our O − C residuals are smaller (RMS O − C = 1.50 min) than von Essen et al. (2013) (RMS O − C = 1.67 min), Covino et al. (2013)

1 http://var2.astro.cz/ETD/
Table 2. Fitted parameter values for each light curve of Qatar-1.

<table>
<thead>
<tr>
<th>Date</th>
<th>$r_A + r_b$</th>
<th>k</th>
<th>r_A</th>
<th>r_b</th>
<th>Inclination (°)</th>
<th>T_0 (BJD/TDB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011.08.25</td>
<td>0.178 ± 0.011</td>
<td>0.1455 ± 0.0039</td>
<td>0.155 ± 0.009</td>
<td>0.0226 ± 0.0018</td>
<td>84.64 ± 0.84</td>
<td>55799.5759 ± 0.0002</td>
</tr>
<tr>
<td>2011.08.25</td>
<td>0.179 ± 0.009</td>
<td>0.1469 ± 0.0039</td>
<td>0.156 ± 0.007</td>
<td>0.0229 ± 0.0016</td>
<td>84.62 ± 0.66</td>
<td>55799.5755 ± 0.0001</td>
</tr>
<tr>
<td>2011.08.25</td>
<td>0.184 ± 0.009</td>
<td>0.1467 ± 0.0041</td>
<td>0.160 ± 0.007</td>
<td>0.0235 ± 0.0016</td>
<td>84.02 ± 0.73</td>
<td>55799.5758 ± 0.0002</td>
</tr>
<tr>
<td>2011.08.25</td>
<td>0.172 ± 0.011</td>
<td>0.1428 ± 0.0035</td>
<td>0.150 ± 0.009</td>
<td>0.0215 ± 0.0018</td>
<td>85.18 ± 0.89</td>
<td>55799.5756 ± 0.0001</td>
</tr>
<tr>
<td>2012.07.21</td>
<td>0.185 ± 0.004</td>
<td>0.1500 ± 0.0022</td>
<td>0.161 ± 0.004</td>
<td>0.0241 ± 0.0008</td>
<td>83.95 ± 0.32</td>
<td>56130.4430 ± 0.0001</td>
</tr>
<tr>
<td>2012.09.11</td>
<td>0.178 ± 0.007</td>
<td>0.1461 ± 0.0028</td>
<td>0.155 ± 0.006</td>
<td>0.0226 ± 0.0010</td>
<td>84.50 ± 0.52</td>
<td>56181.5668 ± 0.0001</td>
</tr>
<tr>
<td>2013.06.14</td>
<td>0.197 ± 0.006</td>
<td>0.1524 ± 0.0024</td>
<td>0.171 ± 0.004</td>
<td>0.0260 ± 0.0010</td>
<td>83.33 ± 0.34</td>
<td>56458.4665 ± 0.0002</td>
</tr>
<tr>
<td>2013.07.28</td>
<td>0.183 ± 0.006</td>
<td>0.1480 ± 0.0020</td>
<td>0.159 ± 0.004</td>
<td>0.0235 ± 0.0010</td>
<td>84.10 ± 0.42</td>
<td>56502.4905 ± 0.0002</td>
</tr>
<tr>
<td>2014.04.19</td>
<td>0.176 ± 0.018</td>
<td>0.1471 ± 0.0083</td>
<td>0.153 ± 0.015</td>
<td>0.0226 ± 0.0030</td>
<td>84.91 ± 1.50</td>
<td>56766.6120 ± 0.0004</td>
</tr>
<tr>
<td>2014.06.04</td>
<td>0.181 ± 0.009</td>
<td>0.1458 ± 0.0028</td>
<td>0.158 ± 0.007</td>
<td>0.0231 ± 0.0014</td>
<td>84.41 ± 0.66</td>
<td>56813.4731 ± 0.0002</td>
</tr>
<tr>
<td>2014.06.04</td>
<td>0.182 ± 0.020</td>
<td>0.1446 ± 0.0076</td>
<td>0.159 ± 0.016</td>
<td>0.0230 ± 0.0032</td>
<td>84.10 ± 1.50</td>
<td>56813.4720 ± 0.0003</td>
</tr>
<tr>
<td>2014.09.07</td>
<td>0.173 ± 0.011</td>
<td>0.1427 ± 0.0035</td>
<td>0.151 ± 0.009</td>
<td>0.0216 ± 0.0018</td>
<td>83.86 ± 0.80</td>
<td>56908.6149 ± 0.0002</td>
</tr>
<tr>
<td>Weighted mean</td>
<td>0.184 ± 0.002</td>
<td>0.1475 ± 0.0009</td>
<td>0.160 ± 0.002</td>
<td>0.0236 ± 0.0004</td>
<td>84.03 ± 0.16</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Multiband photometry of Qatar-1

The BUSCA light curves were obtained simultaneously in three filters using the same telescope and instrument, so are useful for investigating the possible presence of star-spots. Fig. 3 shows the three light curves overplotted. Whilst there are suggestions of star-spots in the g and r data, these are close to the level of the noise so their existence is not proven. This transit was also monitored using the CAHA 1.23 m telescope (first data set in Fig. 1), and these data do not confirm the presence of any star-spots.

Whilst we have no clear detection of star-spots via occultation during transit, spots are a common phenomenon on the surfaces of K-type dwarfs. They can cause brightness modulation at the rotational period (and/or its submultiples) of the star. We used the discovery light curves from QES (Alsubai et al. 2011), which span 380 d, to search for stellar variability. A Lomb–Scargle periodogram of the data shows a clear detection of sinusoidal modulation at a period of $P_\star = 23.697 \pm 0.123$ d (Fig. 4), which (RMS$_{O-C} = 2.45$ min), or ETD (RMS$_{O-C} = 3.85$ min). von Essen et al. (2013) found evidence for TTVs in Qatar-1 but we need further and more precise data in order to analyse this scenario in detail.
Table 3. Fitted parameter values for each light curve of TrES-5.

<table>
<thead>
<tr>
<th>Date</th>
<th>$r_A + r_b$</th>
<th>k</th>
<th>r_A</th>
<th>r_b</th>
<th>Inclination (°)</th>
<th>T_0 (BJD/TDB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011.08.26</td>
<td>0.180 ± 0.016</td>
<td>0.144 ± 0.007</td>
<td>0.157 ± 0.013</td>
<td>0.0227 ± 0.0028</td>
<td>85.04 ± 1.42</td>
<td>55800.4753 ± 0.0002</td>
</tr>
<tr>
<td>2011.08.26</td>
<td>0.198 ± 0.006</td>
<td>0.146 ± 0.002</td>
<td>0.172 ± 0.005</td>
<td>0.0252 ± 0.0011</td>
<td>83.58 ± 0.42</td>
<td>55800.4744 ± 0.0002</td>
</tr>
<tr>
<td>2011.08.26</td>
<td>0.194 ± 0.014</td>
<td>0.135 ± 0.005</td>
<td>0.171 ± 0.011</td>
<td>0.0232 ± 0.0022</td>
<td>83.79 ± 0.90</td>
<td>55800.4751 ± 0.0003</td>
</tr>
<tr>
<td>2012.09.10</td>
<td>0.184 ± 0.014</td>
<td>0.139 ± 0.005</td>
<td>0.161 ± 0.011</td>
<td>0.0225 ± 0.0022</td>
<td>84.87 ± 0.98</td>
<td>56181.4120 ± 0.0002</td>
</tr>
<tr>
<td>2013.06.15</td>
<td>0.188 ± 0.008</td>
<td>0.145 ± 0.002</td>
<td>0.164 ± 0.007</td>
<td>0.0238 ± 0.0015</td>
<td>84.55 ± 0.58</td>
<td>56458.5923 ± 0.0001</td>
</tr>
<tr>
<td>2013.07.30</td>
<td>0.170 ± 0.010</td>
<td>0.141 ± 0.005</td>
<td>0.149 ± 0.008</td>
<td>0.0210 ± 0.0015</td>
<td>85.10 ± 0.84</td>
<td>56504.4919 ± 0.0001</td>
</tr>
<tr>
<td>2013.09.14</td>
<td>0.184 ± 0.014</td>
<td>0.145 ± 0.005</td>
<td>0.161 ± 0.011</td>
<td>0.0232 ± 0.0002</td>
<td>85.48 ± 0.91</td>
<td>56550.4915 ± 0.0001</td>
</tr>
<tr>
<td>2013.09.14</td>
<td>0.180 ± 0.014</td>
<td>0.139 ± 0.005</td>
<td>0.158 ± 0.011</td>
<td>0.0220 ± 0.0022</td>
<td>84.26 ± 1.03</td>
<td>56550.4915 ± 0.0001</td>
</tr>
</tbody>
</table>

Weighted mean 0.188 ± 0.004 0.143 ± 0.0012 0.164 ± 0.003 0.0232 ± 0.0002 84.27 ± 0.26

3.3 TrES-5b

The analysis of our eight light curves of TrES-5 followed the same steps as for Qatar-1 above. The best-fitting photometric parameters are given in Table 3 and the best fits are plotted in Fig. 5. The parameter values in Table 3 were combined into weighted means for the determination of the physical properties of the system (see below). The resulting orbital ephemeris is

$$T_0 = 2456458.59219(9) + 1.48224686(114) \cdot E.$$ \hfill (2)

As with Qatar-1, we added T_0 measurements from the ETD data base (again using only those with qualities higher than 3) and formed the O–C diagram (Fig. 6). The best-fitting ephemeris has $\chi^2_{\text{red}} = 7.15$, which a factor of 10 lower than that for Qatar-1. This χ^2_{red} indicates either that the linear ephemeris is a poor representation of the data or that the error bars of many of the T_0 values are underestimated. As with Qatar-1, further data are needed to investigate this situation and to provide clear evidence (or otherwise) of the presence of TTVs in this system.

The multiband data from BUSCA are shown in Fig. 7, and contain no clear evidence of star-spot occultations. The data during totality (between second and third contact) are rather noisy so are not good
and from the tabulated predictions of five different sets of theoretical stellar evolutionary models. The values of \(r_A, r_B, \) and \(i \) in Tables 2 and 3 were combined according to their weighted mean, inflating the resulting error bars to enforce \(\chi^2 = 1.0 \) for each quantity. The spectroscopic measurements of the stellar effective temperature \((T_{\text{eff}}) \), metallicity \(([\text{Fe/H}]) \), and orbital velocity amplitude \((K_b) \) were taken from published studies and are summarized in Table 4. Tabulated predictions were obtained from the Claret (2004a), Y2 (Demarque et al. 2004), Teramo (Pietrinferni et al. 2004), VRSS (VandenBerg, Bergbusch & Dowler 2006), and DSEP (Dotter et al. 2008) stellar models.

For each target we began by estimating a value for the velocity amplitude of the planet, \(K_b \), allowing us to calculate a set of physical properties for the system using standard formulae. The value of \(K_b \) was then iteratively refined to maximize the agreement between the observed and predicted \(T_{\text{eff}} \), and the measured \(r_A \) and predicted \(\frac{r_A}{r_B} \).

Finally, the full procedure was undertaken using each of the five sets of stellar model predictions. For both objects we assumed a circular orbit, based on the conclusions of Covino et al. (2013) and Mandushev et al. (2011). We used the set of physical constants given by Southworth (2011).

The uncertainties on the input parameters were propagated through the analysis using a perturbation approach, and added in quadrature to give the final random error. A systematic error bar was also estimated based on the interagreement between the results obtained using each of the five different model sets. Table 5 gives our final physical properties, random error bars for all quantities, and systematic error bars for those results which depend on stellar theory.

Also, only for Qatar-1A, we were able to calculate the stellar rotation period. Thus, we can use gyrochronology model to estimate stellar the age of Qatar-1b host star. Using the model from Barnes (2007) and stellar rotation period 23.697 d and \(B - V = 1.06 \), we estimate the age of Qatar-1A \(\tau_B = 1.1865 \pm 0.47 \) Gyr.

Our final results for Qatar-1 are in good agreement with published studies (Alsubai et al. 2011; Covino et al. 2013), and yield a significant improvement in precision. In the case of TrES-5 we agree with the findings of Mandushev et al. (2011) but do not obtain significantly smaller error bars. This is because we account for systematic errors whereas Mandushev et al. (2011) do not, and also because the errors estimated by Mandushev et al. (2011) appear to be too small (for example they claim that the orbital inclination is \(i = 84:529 \pm 0.005 \), a level of precision not normally achieved even with Kepler or Hubble Space Telescope light curves). Our results are therefore to be preferred to those of Mandushev et al. (2011) because they are based on a larger and more precise data set, and because our error bars have been more robustly calculated.

5 RESULTS AND CONCLUSIONS

We present extensive optical photometry of transit events in two extrasolar planetary systems with K-dwarf host stars. Our data comprise 12 light curves of Qatar-1 and eight light curves of TrES-5. These data include simultaneous observations in three passbands of one transit for each object. We use these data to search for star-spot crossing events during transit, with a negative result. We do, however, measure the rotational period of \(P_r = 23.697 \pm 0.123 \) d for Qatar-1A from the survey photometry in its discovery paper, showing that this does display spot activity. The corresponding rotational velocity is close to the \(v \sin i \) value measured from an observation of the Rossiter–McLaughlin effect in this system, so its low projected orbital obliquity also implies a low true orbital obliquity. The
Table 5. Derived physical properties of the two systems. Where two sets of error bars are given, the first is the statistical uncertainty and the second is the systematic uncertainty.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Unit</th>
<th>Qatar-1</th>
<th>TrES-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellar mass</td>
<td>M_A</td>
<td>M_\odot</td>
<td>0.818 ± 0.047 ± 0.050</td>
<td>0.901 ± 0.029 ± 0.008</td>
</tr>
<tr>
<td>Stellar radius</td>
<td>R_A</td>
<td>R_\odot</td>
<td>0.796 ± 0.016 ± 0.017</td>
<td>0.868 ± 0.013 ± 0.002</td>
</tr>
<tr>
<td>Stellar surface gravity</td>
<td>$\log g_A$</td>
<td>c.g.s.</td>
<td>4.549 ± 0.011 ± 0.009</td>
<td>4.517 ± 0.012 ± 0.001</td>
</tr>
<tr>
<td>Stellar density</td>
<td>ρ_A</td>
<td></td>
<td>1.621 ± 0.046</td>
<td>1.381 ± 0.051</td>
</tr>
<tr>
<td>Planet mass</td>
<td>M_b</td>
<td>M_{Jup}</td>
<td>1.293 ± 0.052 ± 0.054</td>
<td>1.790 ± 0.067 ± 0.010</td>
</tr>
<tr>
<td>Planet radius</td>
<td>R_b</td>
<td>R_{Jup}</td>
<td>1.142 ± 0.026 ± 0.024</td>
<td>1.194 ± 0.015 ± 0.003</td>
</tr>
<tr>
<td>Planet surface gravity</td>
<td>g_b</td>
<td>m s$^{-2}$</td>
<td>24.56 ± 0.70</td>
<td>31.1 ± 1.0</td>
</tr>
<tr>
<td>Planet density</td>
<td>ρ_b</td>
<td></td>
<td>0.811 ± 0.036 ± 0.017</td>
<td>0.983 ± 0.039 ± 0.003</td>
</tr>
<tr>
<td>Equilibrium temperature</td>
<td>T_{eq}^\prime</td>
<td>K</td>
<td>1388 ± 29</td>
<td>1480 ± 13</td>
</tr>
<tr>
<td>Safronov number</td>
<td>Θ</td>
<td></td>
<td>0.0640 ± 0.0017 ± 0.0014</td>
<td>0.0817 ± 0.0028 ± 0.002</td>
</tr>
<tr>
<td>Orbital semi-major axis</td>
<td>a</td>
<td>au</td>
<td>0.023 13 ± 0.000 44 ± 0.000 48</td>
<td>0.024 59 ± 0.000 26 ± 0.0007</td>
</tr>
<tr>
<td>Age (gyrochronology)</td>
<td>τ_e</td>
<td>GyR</td>
<td>1.19 ± 0.47</td>
<td></td>
</tr>
</tbody>
</table>

lack of observed spot crossings may be due to the planets crossing latitudes of the stars which show low spot activity, i.e. the planetary chords miss the active latitudes of the stellar surfaces.

We use our data to measure the photometric parameters of both systems. When combined with published spectroscopic quantities, these yield precise measurements of the full physical properties of the systems. Qatar-1 and TrES-5 have notable similarities in their respective stellar properties, and planetary equilibrium temperature, radius and density. Our results also yield refined measurements of the orbital ephemerides of the systems.

ACKNOWLEDGEMENTS

This publication is supported by NPRP grant no. X-019-1-006 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Based on observations obtained with the 1.52-m Cassini telescope at the OAB Observatory in Loiano (Italy), and with the 1.23-m and 2.2-m telescopes at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto (Spain), jointly operated by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

We thank to TÜBİTAK for the partial support in using T100 telescope with project number 12CT100-378. OB acknowledges the support by the research fund of Ankara University (BAP) through the project 13B4240006.

REFERENCES

This paper has been typeset from a TeX/LaTeX file prepared by the author.